
1

DEEP NEURAL NETWORKS FOR NAMED ENTITY
RECOGNITION ON SOCIAL MEDIA

SOSYAL MEDYA ÜZERİNDE VARLIK İSMİ TANIMA İÇİN
DERİN SİNİR AĞLARI

EMRE KAĞAN AKKAYA

ASST. PROF. DR. BURCU CAN BUĞLALILAR

Supervisor

Submitted to Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

November 2018

This work named “Deep Neural Networks for Named Entity Recognition on Social Me-

dia” by EMRE KAĞAN AKKAYA has been approved as a thesis for the Degree of MAS-

TER OF SCIENCE IN COMPUTER ENGINEERING by the below mentioned Examin-

ing Committee Members.

Prof. Dr. Cem BOZŞAHİN

Head .

Asst. Prof. Dr. Burcu Can BUĞLALILAR

Supervisor .

Asst. Prof. Dr. Mehmet KÖSEOĞLU

Member .

Asst. Prof. Dr. Ayça TARHAN

Member .

Asst. Prof. Dr. Umut ÖZGE

Member .

This thesis has been approved as a thesis for the Degree of MASTER OF SCIENCE IN

COMPUTER ENGINEERING by Board of Directors of the Institute for Graduate Studies

in Science and Engineering.

Prof. Dr. Menemşe GÜMÜŞDERELİOĞLU
Director of the Institute of

Graduate School of Science and Engineering

To my family. . .

ETHICS

In this thesis study, prepared in accordance with the spelling rules of Institute of Graduate
Studies in Science of Hacettepe University,

I declare that

• all the information and documents have been obtained in the base of the academic
rules.

• all audio-visual and written information and results have been presented according to
the rules of scientific ethics

• in case of using others works, related studies have been cited in accordance with the
scientific standards

• all cited studies have been fully referenced

• I did not do any distortion in the data set

• and any part of this thesis has not been presented as another thesis study at this or any
other university.

26/11/2018

EMRE KAĞAN AKKAYA

YAYINLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI

Enstitü tarafından onaylanan lisansüstü tezimin/raporumun tamamını veya herhangi bir kısmını,
basılı (kağıt) ve elektronik formatta arşivleme ve aşağıda verilen koşullarla kullanıma açma
iznini Hacettepe Üniversitesi’ne verdiğimi bildiririm. Bu izinle Üniversite’ye verilen kul-
lanım hakları dışındaki tüm fikri mülkiyet haklarım bende kalacak, tezimin tamamının ya da
bir bölümünün gelecekteki çalışmalarda (makale, kitap, lisans ve patent vb.) kullanım hak-
ları bana ait olacaktır.

Tezin kendi orijinal çalışmam olduğunu, başkalarının haklarını ihlal etmediğimi ve tezimin
tek yetkili sahibi olduğumu beyan ve taahhüt ederim. Tezimde yer alan telif hakkı bulunan
ve sahiplerinden yazılı izin alınarak kullanması zorunlu metinlerin yazılı izin alarak kul-
landığımı ve istenildiğinde suretlerini Üniversite’ye teslim etmeyi taahhüt ederim.

Yükseköğretim Kurulu tarafından yayınlanan ”Lisansüstü Tezlerin Elektronik Ortamda
Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” kapsamında tezim
aşağıda belirtilen koşullar haricince YÖK Ulusal Tez Merkezi / H.Ü. Kütüphaneleri Açık
Erişim Sisteminde erişime açılır.

� Enstitü / Fakulte yönetim kurulu kararı ile tezimin erişime açılması mezuniyet tarihim-
den itibaren 2 yıl ertelenmiştir.

� Enstitü / Fakulte yönetim kurulu gerekçeli kararı ile tezimin erişime açılması mezu-
niyet tarihimden itibaren ... ay ertelenmiştir.

� Tezim ile ilgili gizlilik kararı verilmiştir.

26/11/2018

EMRE KAĞAN AKKAYA

ABSTRACT

DEEP NEURAL NETWORKS FOR NAMED ENTITY RECOGNITION
ON SOCIAL MEDIA

Emre Kağan AKKAYA

Master of Science, Computer Engineering Department
Supervisor: Asst. Prof. Dr. Burcu CAN BUĞLALILAR

November 2018, 126 pages

Named entity recognition (NER) on noisy data, specifically user-generated content (e.g. on-

line reviews, tweets) is a challenging task because of the presence of ill-formed text. In this

regard, while studies on morphologically-poor languages such as English has been rapidly

advancing in recent years, studies on morphologically-rich languages such as Turkish has

fallen behind for noisy data. This is mostly due to Turkish being an agglutinative language,

having a rich morphology and also having scarce annotated data. Existing studies on Turkish

both for noisy and formal (e.g. news text) data still make use of hand-crafted features and/or

external domain-specific resources (e.g. gazetteers). In this thesis, we investigate the effects

of neural architectures without the help of any external domain-specific resources and/or

manually-constructed features. So that the proposed model can also be used for different

morphologically-rich languages and for different domains. Moreover, we also experimented

with different word and sub-word level (e.g. morpheme, character or character n-gram level)

embedding techniques and we argue that sub-word level embeddings provide better word

representations for morphologically-rich languages syntactically and semantically. For this

purpose, we propose a transfer learning model that is an extension of a baseline, bidirectional

LSTM-CRF architecture. The model is trained on two different datasets simultaneously for

i

http://cs.hacettepe.edu.tr

the purpose of transfer learning from formal to noisy data and it exploits morpheme-level,

character n-gram level and orthographic character-level embeddings as its feature set. Con-

sequently, we have obtained an F1 score of 65.72% on Turkish tweet dataset and 41.97% on

English WNUT’17 dataset.

Keywords: named entity recognition, recurrent neural networks, long-short term mem-

ory, conditional random fields, transfer learning, Turkish, natural language processing, deep

learning

ii

ÖZET

SOSYAL MEDYA ÜZERİNDE VARLIK İSMİ TANIMA İÇİN DERİN
SİNİR AĞLARI

Emre Kağan AKKAYA

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Yrd. Doç. Dr. Burcu CAN BUĞLALILAR

Kasım 2018, 126 sayfa

Gürültülü veri, özellikle kullanıcı tarafından oluşturulan içerik (örn. çevrimiçi yorum, tweet),

üzerinde varlık ismi tanıma metnin bozuk yapısından dolayı zorlu bir görevdir. Bu kapsamda,

İngilizce gibi göreli morfolojik olarak fakir diller üzerindeki araştırmalar son yıllarda hızla il-

erlerken, Türkçe gibi morfolojik olarak zengin dillerde gürültülü veri üzerindeki araştırmalar

geri kalmıştır. Bu çoğunlukla Türkçe dilinin morfolojik olarak zengin ve sondan eklemeli ol-

ması ile az miktarda etiketli veriye sahip olması nedeniyledir. Türkçe’de varolan araştırmalar

hem gürültü hem de resmi (örn. haber metni) veri üzerinde çoğunlukla hala el yapımı

öznitelikler ve/veya alana-özgü harici kaynaklardan (isim listeleri) faydalanmaktadır. Bu

tezdeyse, el yapımı öznitelikler ve/veya alana-özgü harici kaynaklar kullanmayan yapay sinir

ağlarının etkileri incelenmektedir. Öyle ki, önerilen model farklı morfolojik olarak dillerde

ve farklı alanlarda da kullanılabilsin. Bununla birlikte, farklı kelime ve kelime-altı (örn. mor-

fem ve karakter n-gram seviyesinde) embedding teknikleriyle de deneyler gerçekleştirdik

ve morfolojik olarak zengin diller için kelime-altı embedding’lerin sözdizimi ve anlamsal

açıdan daha iyi kelime temsili sunduğunu savunuyoruz. Bu amaçla, temel aldığımız LSTM-

CRF mimarisinin uzantısı olan bir transfer öğrenme modeli önermekteyiz. Söz konusu

model, resmi veriden gürültülü veriye bilgi aktarımı amacıyla aynı anda iki farklı veri kümesi

iii

üzerinde eğitilmekte olup; morfem, karakter n-gram ve ortografik embedding’lerden fay-

dalanır. Sonuç olarak, Türkçe gürültülü veri kümesi üzerinde %65.72 ve İngilizce WNUT’17

veri kümesinde %41.97 F1 puanı elde ettik.

Anahtar Kelimeler: varlık ismi tanıma, özyineli sinir ağları, uzun-kısa süreli hafıza, koşullu

rastgele alanlar, öğrenme aktarımı, Türkçe, doğal dil işleme, derin öğrenme

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my respectable supervisor Asst. Prof. Dr. Burcu

Can Buğlalılar for her persistent encouragement, endless patience, and invaluable guidance

in this thesis. It would not have been possible without her efforts for which I am, and always

will be, gratefully indebted.

I would like to also show my sincere appreciation to my thesis committee members; Prof. Dr.

Cem Bozşahin, Asst. Prof. Dr. Mehmet Köseoğlu, Asst. Prof. Dr. Ayça Tarhan and Asst.

Prof. Dr. Umut Özge for taking their time to review and providing insightful comments.

I would like to also thank my dearest friends Burak Gülsaçan, Tutku Demiröz, Serhan Aktar,

İrem Aktar, Merve Akşit and Tuğba Kaya for their unfailing support.

Finally, and most importantly, I would like to thank my family, my dear mother Jale Akkaya,

my dear father Zafer Akkaya and my brother Samet Parsak for their unconditional love and

support.

v

CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENTS . v

CONTENTS . vi

FIGURES . ix

TABLES . xiii

ABBREVIATIONS. xiv

1. INTRODUCTION. 1

1.1. Overview . 1

1.2. Motivation . 2

1.3. Research Questions . 3

1.4. Organization of the Thesis . 4

2. BACKGROUND . 5

2.1. Conditional Random Fields. 5

2.1.1. Mathematical Definition.. 6

2.2. Artificial Neural Networks . 11

2.2.1. Definition... 11

2.2.2. Recurrent Neural Networks ... 18

2.2.3. Convolutional Neural Networks .. 23

2.3. Word Representations . 30

2.3.1. Word2vec... 30

2.3.2. FastText ... 33

2.3.3. Morph2vec... 35

2.4. Transfer Learning . 37

3. LITERATURE REVIEW .. 39

3.1. Named Entity Recognition on Turkish . 39

vi

3.1.1. Studies on Formal Data ... 39

3.1.2. Studies on Noisy Data ... 41

3.2. Named Entity Recognition on English . 43

3.2.1. Studies on Formal Data ... 43

3.2.2. Studies on Noisy Data ... 46

3.3. Transfer Learning . 49

4. THE PROPOSED MODEL . 53

4.1. Word Embeddings. 53

4.1.1. Orthographic character-level embeddings... 53

4.1.2. Word2vec... 57

4.1.3. FastText ... 57

4.1.4. Morph2vec... 58

4.1.5. Dropout.. 59

4.2. LSTM-CRF Model . 60

4.2.1. LSTM Component... 60

4.2.2. CRF Component.. 62

4.3. Transfer Learning Model . 64

4.4. Implementation Details . 67

5. EXPERIMENTS & RESULTS . 68

5.1. Datasets . 68

5.2. Experiments . 70

5.2.1. Preprocessing... 71

5.2.2. Experimental Setting & Training .. 71

5.2.3. Evaluation.. 72

5.2.4. Experimental Results on Turkish .. 73

5.2.5. Experimental Results on English... 78

6. CONCLUSION. 83

6.1. Concluding Remarks . 83

6.2. Future Work . 85

A APPENDIX: EXPERIMENTAL RESULTS ON TURKISH NOISY DATASET 86

vii

B APPENDIX: EXPERIMENTAL RESULTS ON ENGLISH NOISY AND FOR-

MAL DATASETS . 93

REFERENCES . 99

viii

FIGURES

Page

2.1. Perceptron . 12

2.2. FFNN with one hidden layer . 15

2.3. Simplified feed-forward neural network with one neuron on each layer 16

2.4. A recurrent neural network with its unfolded time steps . 18

2.5. LSTM gating mechanism . 22

2.6. Architecture of CNN . 24

2.7. CNN with different strides . 26

2.8. CNN max pooling . 27

2.9. CNN with different pooling strategies . 28

2.10. Architecture of CNN adapted for NLP. 29

2.11. Architecture of morph2vec model . 35

2.12. Transfer learning . 38

3.1. State-of-the-art Turkish NER model . 40

3.2. BiLSTM-CRF NER model . 44

3.3. Pretrained word embeddings . 45

3.4. Architecture of transfer learning model . 51

4.1. Overview of final word embeddings . 54

4.2. Character-level word embedding using a bidirectional LSTM. 55

4.3. Character-level word embedding using CNN. Source: Aguilar et al. [1] 56

4.4. Architecture of morph2vec model . 59

4.5. Overview of our baseline model . 61

4.6. Architecture of bidirectional LSTM. 62

4.7. Overview of our initial transfer learning model . 65

4.8. Overview of our final transfer learning model . 66

ix

TABLES

3.1. Comparison of English NER studies . 50

4.1. FastText training settings for Turkish word embeddings . 58

5.1. Datasets . 68

5.2. DS-1 entity distribution . 69

5.3. DS-2 entity distribution . 69

5.4. DS-3 entity distribution . 70

5.5. Hyperparameters . 72

5.6. Experiment results of the baseline model on DS-1 . 74

5.7. Experiment results of the transfer learning model on DS-1 . 75

5.8. Overview of the results on DS-1 . 76

5.9. Comparison of our models with the related work on DS-1 . 78

5.10. Overview of the results on DS-3 . 79

5.11. Experiment results of the baseline model on DS-2 . 80

5.12. Experiment results of the baseline model on DS-3 . 80

5.13. Experiment results of the transfer learning model on DS-3 . 81

5.14. Comparison of our models with the related work on DS-3 . 82

1.1. Experiment of baseline model with fasttext and character-level embeddings

on DS-1 . 86

1.2. Experiment of baseline model with morph2vec and character-level embed-

dings on DS-1 . 86

1.3. Experiment of baseline model with word2vec and character-level embed-

dings on DS-1 . 86

1.4. Experiment of baseline model with fasttext and orthographic character-level

embeddings on DS-1 . 87

1.5. Experiment of baseline model (w/o CRF) with fasttext and orthographic

character-level embeddings on DS-1 . 87

x

1.6. Experiment of baseline model with fasttext and character-level and ortho-

graphic character-level embeddings on DS-1 . 87

1.7. Experiment of baseline model with fasttext, morph2vec and orthographic

character-level embeddings on DS-1 . 88

1.8. Experiment of baseline model with fasttext, morph2vec* and character-level

embeddings on DS-1 . 88

1.9. Experiment of baseline model with morph2vec and orthographic character-

level embeddings on DS-1 . 88

1.10. Experiment of baseline model with word2vec and orthographic character-

level embeddings on DS-1 . 89

1.11. Experiment of baseline model with fasttext and morph2vec embeddings on

DS-1 . 89

1.12. Experiment of baseline model with fasttext, morph2vec and character-level

embeddings on DS-1 . 89

1.13. Experiment of baseline model with fasttext, morph2vec and orthographic

character-level embeddings on DS-1 . 90

1.14. Experiment of transfer learning model (w/o addt’l) with fasttext and ortho-

graphic character-level embeddings on DS-1 . 90

1.15. Experiment of transfer learning model with fasttext and orthographic character-

level embeddings on DS-1 . 90

1.16. Experiment of transfer learning model with fasttext and orthographic character-

level embeddings on DS-1 . 91

1.17. Experiment of transfer learning model with fasttext, morph2vec and ortho-

graphic character-level embeddings on DS-1 . 91

1.18. Experiment of transfer learning model with fasttext, morph2vec and ortho-

graphic character-level embeddings on DS-1 . 91

1.19. Experiment of transfer learning model with fasttext, morph2vec and ortho-

graphic character-level embeddings on DS-1 . 92

1.20. Experiment of transfer learning model with fasttext, morph2vec and ortho-

graphic character-level embeddings on DS-1 . 92

xi

2.1. Experiment of baseline model with word2vec and character-level embed-

dings on DS-2 . 93

2.2. Experiment of baseline model with fasttext and character-level embeddings

on DS-3 . 93

2.3. Experiment of baseline model with morph2vec and character-level embed-

dings on DS-3 . 93

2.4. Experiment of baseline model with word2vec and character-level embed-

dings on DS-3 . 94

2.5. Experiment of baseline model with fasttext and orthographic character-level

embeddings on DS-3 . 94

2.6. Experiment of baseline model with morph2vec and orthographic character-

level embeddings on DS-3 . 94

2.7. Experiment of baseline model with word2vec and orthographic character-

level embeddings on DS-3 . 95

2.8. Experiment of baseline model with fasttext, morph2vec and character-level

embeddings on DS-3 . 95

2.9. Experiment of baseline model with fasttext, morph2vec and orthographic

character-level embeddings on DS-3 . 95

2.10. Experiment of baseline model with fasttext and morph2vec embeddings on

DS-3 . 96

2.11. Experiment of baseline model with fasttext, character-level and orthographic

character-level embeddings on DS-3 . 96

2.12. Experiment of baseline model with fasttext, morph2vec, word2vec and or-

thographic character-level embeddings on DS-3 . 96

2.13. Experiment of transfer learning model (w/o addt’l) with fasttext and ortho-

graphic character-level embeddings on DS-3 . 97

2.14. Experiment of transfer learning model with fasttext, morph2vec and ortho-

graphic character-level embeddings on DS-3 . 97

2.15. Experiment of transfer learning model with fasttext, morph2vec, PoS tag em-

beddings and orthographic character-level embeddings on DS-3. 97

xii

2.16. Experiment of transfer learning model with fasttext, word2vec and ortho-

graphic character-level embeddings on DS-3 . 98

2.17. Experiment of baseline model with fasttext, morph2vec, word2vec and or-

thographic character-level embeddings on DS-3 . 98

2.18. Experiment of transfer learning model with fasttext, morph2vec, word2vec

and orthographic character-level embeddings on DS-3 . 98

xiii

ABBREVIATIONS

NN Neural Network

FFNN Feed-forward Neural Network

RNN Recurrent Neural Network

BPTT Backpropagation Through Time

SGD Stochastic Gradient Descent

CBOW Continuous Bag-of-words

LSTM Long-short Term Memory

Bi-LSTM Bidirectional Long-short Term Memory

CRF Conditional Random Fields

CNN Convolutional Neural Network

xiv

1. INTRODUCTION

1.1. Overview

Named Entity Recognition (NER) is a problem of information extraction in natural lan-

guage processing (NLP) that aims to identify and categorize each word into pre-defined

categories. The term, named entity, first coined by Ralph Grishman and Beth Sundheim [2]

during the sixth of Message Understanding Conferences, MUC-6, and defined as ”identifying

the names of all the people, organization, and geographic locations in a text” [3]. The term

as expected has evolved over time and nowadays it may also include recognizing various dif-

ferent categories such as time and date, money and percentage, corporation, creative-work,

group, product names etc.

Example The sentence

Cumhuriyetin ilk kurumu olan Cumhurbaşkanlığı Senfoni Orkestrası Büyük Atatürk’ün yüce

makamının adını vermesiyle onurlandırılmıştır. (Presidential Symphony Orchestra as the

first institution of the Republic of Turkey was honoured by Great Turk Atatürk naming it with

his supreme authority.

is tagged as:

Türkiye/ORG Cumhuriyetinin/ORG ilk kurumu olan Cumhurbaşkanlığı/ORG Senfoni/ORG

Orkestrası/ORG Büyük/PER Atatürk’ün/PER yüce makamının adını vermesiyle onurlandırılmıştır.

Named entity, thus, can also be seen as sequence labeling problem, similar to POS tagging

and usually used as a preprocessing step for various NLP tasks such as machine translation,

automatic question answering, opinion mining, relation extraction and so on.

1

1.2. Motivation

As we can see in previous named entity recognition results in the literature, the performance

of named entity recognition on formal (e.g. newspaper, academic papers) data is very high

and accurate, particularly for languages like English that has abundant annotated data. Re-

cent research such as [4] achieved over 91% F1 score on English for formal data, almost

comparable to human annotation performance. So one can unfairly conclude that the NER

task has nearly reached its peak performance.

However with the ever-changing nature of Internet, especially after the emergence of social

media, we have been introduced to informal/noisy data (user-generated data) such as user

comments and tweets. This new type of data is highly valuable for information extraction

tasks such as opinion mining due to being widespread and having almost up-to-date nature.

This type of noisy and informal text includes missing characters in words (either deliberately

or by forgetfulness), missing punctuation marks, emojis, slang words and abbreviations. Ex-

amples of this nature can be seen in the following tweets:

”Why doesn’t George R.R. Martin use twitter? Because he killed all 140 characters. #got”

”This is Gunnersss! PL not finished yet! Keep going lads! #CHEARS”

For example, Stanford Named Entity Tagger [5] that is based on Conditional Random Fields

(CRF) trained on news data, successfully tags George R. R. Martins as PERSON but fails to

tag Twitter due to missing capitalization and also fails to tag Gunners (alias of Arsenal FC)

and PL (Premier League) because of character repetition, alias and abbreviation.

All of these cause new problems for existing NER systems, considering most of them de-

pend on manually-crafted features (e.g. capitalization, numerical/date/time patterns or other

rule-based features) and/or external domain-specific resources (e.g. gazetteers, lexicons),

therefore ill-suited to noisy data. Some of the existing systems try to solve these new chal-

lenging problems either by extending their existing feature set to better suit this new domain

or by adding new domain-specific resources. Recent successful researches, however, address

these by utilizing neural architectures with the help of auto-generated features. As one of

2

the goals of this thesis, we have researched the effects of different neural architectures and

experimented with different word-level and sub-word level representation techniques.

Despite NER is a well-studied topic for English and Turkish formal data, Turkish NER per-

formance is far behind on noisy/informal data. In [6] which is the current state-of-the-art

work for Turkish NER, 91.94% F1 score (ENAMEX) for news data and only 67.96% F1

score for noisy data was achieved. This is mostly due to Turkish being an agglutinative lan-

guage and having rich morphology and scarce annotated data. As we can see in the following

chapters, most of the existing Turkish NER solutions still use statistical and/or rule-based ap-

proaches that rely mostly on hand-crafted features.

This motivates us to research and adopt proven neural network models for Turkish and in the

process obtain valuable features without using any external domain-specific resources or any

hand-crafted features. In addition, we have researched the means to transfer learning from

formal data to noisy/informal data due to aforementioned scarce annotated data problem. So

that, the resulting Turkish NER model can be practically used in different applications on

different domains without the need of domain-specific knowledge. We also believe that the

proposed model in this thesis can also be trained for different morphologically-rich languages

as well.

As a result, we aim to research and experiment with different neural network models and

features for named entity recognition and provide a Turkish NER model which is capable of

transfer learning and based on a proposed neural architecture without using any domain or

language-specific knowledge.

1.3. Research Questions

The aim of this thesis can be summarized as finding answers to these questions:

• Instead of rule-based approaches, can neural networks be effectively used on noisy

data?

3

• Can we achieve successful results using neural networks for morphologically-rich lan-

guages such as Turkish?

• Can we learn valuable features without using any hand-crafted features for the NER

task?

1.4. Organization of the Thesis

Structure of the thesis can be outlined as follows:

In Chapter 2, different approaches used for sequence labeling are thoroughly described.

This includes various neural networks such as Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RNN). We also describe techniques for learning word-level and

sub-word level representations such as word2vec [7], FastText [8] and morph2vec [9].

In Chapter 3, we present a literature review on Named Entity Recognition, especially fo-

cusing on Turkish and English both for formal and noisy/informal data. Various studies on

learning different word and sub-word level embeddings are also presented in this chapter.

In Chapter 4, we first briefly refer to approaches that we used throughout the experiments

which includes neural networks, sequence labeling technique and word representation algo-

rithms. Then we present the proposed models for English and Turkish. Experimental setting

and training details are also presented in this chapter.

In Chapter 5, results are presented which comprise different experiments conducted on

Turkish and English with formal and informal/noisy data. The chapter also presents compar-

ison to related research in the literature and provides discussion on the results.

In Chapter 6, we conclude the thesis by briefly reviewing the contributions made and ap-

proaches undertaken and provide possible future improvements based on the results we ob-

tained.

4

2. BACKGROUND

In this chapter, the methods and models used for NER as a sequence labeling task will be

described. First, we will explain Conditional Random Fields as one of the most commonly

used models in sequence labeling tasks because of its ability to compute a conditional proba-

bility for the most probable label sequence. Then we will explore neural networks in general

and give recurrent neural networks (RNN), especially Long-Short Term Memory (LSTM), as

an example to learn valuable features in a sequence. We also explain Convolutional Neural

Network (CNN) as an alternative to LSTM in this regard. Subsequently we describe different

word-level and subword-level representation techniques that can be used as features in order

to train the neural networks. After improving on these building blocks, we finally explain

transfer learning model in order to learn better features by incorporating an additional CRF

which is trained on different dataset.

2.1. Conditional Random Fields

As we have discussed before, named entity recognition is the task of assigning each word of

an input sequence into a pre-determined categories. Each sentence in this input is a train-

ing example for our model and there is only a limited number of named entity categories

(i.e. labels). Solving this labeling task is different from other classification models in these

contexts:

• Valuable information will surely be lost if the classifier works only on word basis. It

must also take neighboring tags into account.

• Vector representation of sentences with fixed size is not feasible. There must be a way

to represent different sentences with different lengths.

• The set of all possible label sequences is too large to find the most probable one.

5

Conditional Random Fields (CRF) [10] is one of the statistical models based on graphical

models that are often used for sequence learning.

2.1.1. Mathematical Definition

Our goal is to find the most probable label sequence given an input sequence. Thus, given

that x is an input sequence of x1 · · · xm and s is a sequence of labels s1 · · · sm, we denote

the set of all possible labels as S and set of all possible label sequences that are valid or not

as Sm, then we build a probabilistic model to define the conditional probability:

p(s1 · · · sm|x1 · · ·xm) = p(s | x) (1)

where s refer to a sequence of states and x refer to a sequence of input words.

Moreover, we define a feature vector to map a pair of input sequence and state (label) se-

quence s to d-dimensional feature vector.

Φ(x, s)εIRd (2)

where Φ denotes the global feature function. Building log-linear model gives us the form:

p(s|x;w) =
exp(w.Φ(x, s))∑

s′εSm exp(w.Φ(x, s′))
(3)

where w is a parameter vector and the inner product w.Φ(x, s) refers to the likelihood of

state s given input x.

As we can see, solving this log-linear model is quite challenging due to (1) high number of

possible values for s and (2) having a denominator (normalization constant) that involves a

sum over the set of Sm which is a complex computation.

6

The global feature vector we have mentioned earlier can be defined as:

Φ(x, s) =
m∑
j=1

φ(x, j, sj−1, sj) (4)

As we can see the local feature vector takes input sequence, current label and previous label

into account and that means for every k = 1 · · · d, Φk(x, s) is computed as the sum of the

local feature vectors over the label transitions.

In order to better understand CRF, we must again stress that it represents input sequences

by using these feature functions. Various feature functions for a certain type of sequence

labeling task could be used. For example, some features for the NER task can be defined as

follows:

• Whether a word is capitalized or not

• Looking into neighboring words that may indicate certain type of entities (e.g. ”Co.”,

”Inc.” for indication of corporation or ”TL”, ”dollars” for indication of money)

• Whether a word is the beginning (or end) of a sentence or not

Next, we describe how to learn the weights w for the defined features, which is called pa-

rameter estimation.

2.1.1.1. Parameter Estimation

Given a set of n labeled examples {(xi, si)}ni=1, where each xi is an input sequence xi1 · · ·xim,

and each si is a label sequence si1 · · · sim, the regularized log-likelihood function is defined

as:

L(w) =
n∑
i=1

logp(si | xi;w)− λ

2
||w||2 (5)

7

We want to find good parameter estimates for the weights that maximizes the given log-

likelihood:

w∗ = arg max
wεIRd

n∑
i=1

logp(si | xi;w)− λ

2
||w||2 (6)

By using gradient-based optimization, the partial derivatives take the form:

∂

∂wk
L(w) =

∑
i

Φk(x
i, si)−

∑
i

∑
sεSm

p(s | xi;w)Φk(x
i, s)− λwk (7)

For the first term, all we have to do is to sum over all examples of i = 1 · · ·n and for each

one of them sum over all positions j = 1 · · ·m since it is equal to:

∑
i

Φk(x
i, si) =

∑
i

m∑
j=1

φk(x
i, j, sij−1, s

i
j) (8)

Then we have to compute the second term using dynamic programming where it involves

computation over Sm. The derivation is given below:

∑
sεSm

p(s | xi;w)Φk(x
i, s) (9)

=
∑
sεSm

p(s | xi;w)
m∑
j=1

φk(x
i, j, sij−1, s

i
j) (10)

=
m∑
j=1

∑
sεSm

p(s | xi;w)φk(x
i, j, sij−1, s

i
j) (11)

=
m∑
j=1

∑
aεS,bεS

∑
sεSm:

sj−1=a,sj=b

p(s | xi;w)φk(x
i, j, sij−1, s

i
j) (12)

=
m∑
j=1

∑
aεS,bεS

φk(x
i, j, sij−1, s

i
j)

∑
sεSm:

sj−1=a,sj=b

p(s | xi;w) (13)

=
m∑
j=1

∑
aεS,bεS

qij(a, b)φk(x
i, j, a, b) (14)

8

where

qij(a, b) =
∑
sεSm:

sj−1=a,sj=b

p(s | xi;w) (15)

Hence we have reduced the derivatives into the terms of qij(a, b) which allows us to compute

the whole derivatives efficiently. Another interpretation is that the term qij(a, b) is the proba-

bility of the ith example xi with state a at position j − 1 and state b at position j, under the

distribution of p(s | x;w). Using forward-backward algorithm which is similar to Viterbi

algorithm, this term can be solved in O(mk2) time efficiently.

2.1.1.2. Decoding

Given the input sequence x = x1 · · ·xm, the aim of decoding is to find the most likely label

sequence that can be denoted as:

arg max
sεSm

p(s | x;w) (16)

This can be simplified as below:

arg max
sεSm

p(s | x;w) =
exp(w.Φ(x, s))∑

s′εSm exp(w.Φ(x, s′))
(17)

arg max
sεSm

p(s | x;w) = exp(w.Φ(x, s)) (18)

arg max
sεSm

p(s | x;w) = w.Φ(x, s) (19)

arg max
sεSm

p(s | x;w) = w.

m∑
j=1

φ(x, j, sj−1, sj) (20)

arg max
sεSm

p(s | x;w) =
m∑
j=1

w.φ(x, j, sj−1, sj) (21)

9

This indicates that finding the most likely label sequence is equivalent to finding the sequence

that maximizes the conditional probability:

arg max
sεSm

p(s | x;w) =
m∑
j=1

w.φ(x, d, sj−1, sj) (22)

Given that each transition from state sj−1 to sj has an associated score shown below, it can

be intuitively assumed that for a likely label sequence these transition scores will also be

relatively high compared to an implausible label sequence.

m∑
j=1

w.φ(x, d, sj−1, sj) (23)

Thus only thing we need to do is to find a label sequence with the maximum transition scores.

Again, this can also be solved by dynamic programming.

For the initial step, given that sεS, we have;

π[1, s] = w.φ(x, 1, so, s) (24)

where s0 is the initial label, and π[j, s] is a table of entries that store the maximum probability

for any label sequence ending with label s at position j.

For others, the equation takes the form:

π[j, s] = maxs′εS[π[j − 1, s′] + w.φ(x, j, s′, s)] (25)

where j = 2 · · ·m and s = 1 · · · k.

10

Finally, we can use backpointers to calculate the label sequence with the highest transition

score in O(mk2) time:

max

m∑
j=1

w.φ(x, j, sj−1, sj) = maxsπ[j, s] (26)

2.2. Artificial Neural Networks

2.2.1. Definition

As we have seen CRF allows tagging input sequences but in order to do so, it needs mean-

ingful features that represent the data and in this section we explain different artificial neural

networks which normally learn these features automatically.

A neural network is defined as ”a computing system made up of a number of simple, highly

interconnected processing elements, which process information by their dynamic state re-

sponse to external inputs” [11]. In terms of computing, an artificial neural network (ANN)

is a group of interconnected nodes called neurons and each one of them is responsible for

computation of a specific objective function with the help of some weight and bias values.

In order to understand neural networks, we first need to refer perceptron which is a simple

linear classifier that can often also be called as a single-layer neural network. As seen in

Figure 2.1., given an input vector x = x1 · · ·xi, the first half of the perceptron computes the

weighted sum of the input as
∑

i xi and the second half, output, of the perceptron applies a

sign function on this value. As a result, a perceptron outputs +/− 1 and this can be used to

solve linearly-separable problems.

2.2.1.1. Gradient Descent

During training, we have to find good weights in a correct way to solve the objective prob-

lem. So we need a cost function that we want to minimize to find good weights. For a

11

FIGURE 2.1. Perceptron

d-dimensional space, this is a hyperplane which classifies the labels correctly (Similarly it is

a line or a decision boundary for a 2-dimensional space such as the case for a perceptron).

We can define such hyperplane as:

wT .x+ w0 (27)

Given a set of {(xi, yi)}ni=1 such that yiε{−1, 1}, for any x1 and x2 points on this hyperplane,

we can infer that;

wT .x1 + w0 = wT .x2 + w0 (28)

wT .(x1 − x2) = 0 (29)

which makes wT and (x1 − x2) orthogonal to each other.

Similarly, for any x0, we have wT .x0 + w0 = 0 which also means w0 = −wTx0.

12

Given a point w in d-dimensional space, we can compute its distance to the hyperplane by:

wT .(x− x0) (30)

wT .x− wT .x0 (31)

wT .x+ w0 (32)

Thus, we can conclude the distance function of the point wi as di = yi(w
T .xi + w0). Then,

we can define our cost function as the summation of distance functions such as

Err(w,w0) =
∑
M

−yi.(wTxi + w0) (33)

where M is the set of all misclassified points. As we can see for a bad hyperplane the equation

gives higher error value, however, for a better hyperplane the error value gets smaller. To

achieve our goal of minimizing the error value, so that we can find good weights, we apply

gradient descent.

Gradient descent is the method of taking derivative of the cost function with respect to

the parameters (i.e. w) and then updating the related parameters accordingly. It nudges the

parameter in a way that the value of the cost function gets smaller until it finds the global

minimum or stuck in a local minima. Taking derivatives, we have

∂Err

∂w
=

∑
−yi.xi w.r.t. w and (34)

∂Err

∂w0

=
∑
−yi w.r.t. w0 (35)

13

Finally, we can update parameters such as:

wnew ← wold− ρ
∂Err

∂w
(36)

wnew ← wold+ ρ
∑

yi.xi (37)

wnew ← wold+ ρyi.xi (38)

where ρ is the constant, also called learning rate, which determines how big a step it should

take to find the minima. Often summation overM also ignored and only the multiplication is

taken into account as we can see in Equation 38. This approximation is preferable because of

being computationally faster than the more accurate one and it is called Stochastic Gradient

Descent (SGD).

2.2.1.2. Backpropagation

While perceptron can be seen as the model of a neuron, a group of neurons interconnected

with each other is an artificial neural network, as we have already mentioned. An example

of this can be seen in Figure 2.2. which is called a feed-forward neural network (FFNN).

An FFNN is a neural network without any feedback mechanisms and it consists of (1) one in-

put layer where the input is fed, (2) one output layer where the result (prediction) is obtained

and (3) one or more hidden layers.

As we have already explained, during training of perceptron we can apply gradient descent

which is a derivation of cost function with respect to weight, so that we can update the weight.

But for a neural network consisting of multiple neurons in multiple layers, we have to define

a way to apply gradient descent for all weights. This algorithm is called backpropagation

which we will explain in the example below.

The input part of a neuron is the weighted summation of its inputs and the output part is the

computation of a non-linearity such as sigmoid or tanh.

14

FIGURE 2.2. FFNN with one hidden layer

Given that training examples {(xi, yi)}ni=1 and prediction ŷ, we can denote, for example,

the input part of the neuron k as ak = σjwkj.zj and output part as zk = σ(ak) and the

non-linearity function (sigmoid) of it can be defined as:

σ(ak) =
1

1 + ε−ak
(39)

An example of this scenario can be seen in Figure 2.3.. We can also define our cost function

(error) as the absolute distance between our predictions ŷ and the true labels y as:

Err = |y − ŷ|2 (40)

15

FIGURE 2.3. Simplified feed-forward neural network with one neuron on each layer

In order to find the derivation of cost function with respect to weight wkj , we apply chain

rule:

∂Err

∂wkj
=
∂Err

∂ak
.
∂ak
∂wkj

(41)

∂Err

∂wkj
=
∂Err

∂ak
.zj (42)

∂Err

∂wkj
= δk.zj (43)

In order to calculate the first derivative δk, we can again apply chain rule such as:

∂Err

∂ak
=

∑
l

∂Err

∂al
.
∂al
∂ak

(44)

∂Err

∂ak
=

∑
l

δl.
∂al
∂ak

(45)

and the second derivative can be computed as

∂al
∂ak

=
∂al
∂zk

.
∂zk
∂ak

(46)

∂al
∂ak

= wlk.σ
′(ak) (47)

16

Putting all together, δk can be computed as

δk =
δErr

δak
(48)

δk =
∑
l

δlwlk.σ
′(ak) (49)

δk = σ′(ak)
∑
l

δlwlk (50)

This formula has the meaning that in order to compute δk, the computation of δl must be

done. This proves that the derivation of the cost function with respect to the weights in that

layer depends on the derivation of the cost function with respect to the weights in the next

layer. Thus, if we can compute δk for the output layer we can compute the derivation for all

of the layers that comes before.

Assume that the output layer o consists of a single neuron without any activation function,

then the delta δo for the last layer takes the form:

δo =
∂Err

∂ŷ
(51)

δo =
∂|y − ŷ|2

∂ŷ
(52)

δo = −2(y − ŷ) (53)

Therefore knowing δk, we can effectively compute the derivation of the cost function with

respect to the weights as the equation we have found earlier dictates:

∂Err

∂wkj
= δk.zj (54)

So, in summary, the backpropagation is the algorithm utilizing chain rule to find the deriva-

tion of the cost function with respect to each weight so that this derivation, gradient, can be

used to update the weights as we have already seen in gradient descent.

17

2.2.2. Recurrent Neural Networks

2.2.2.1. Definition

Unlike the traditional neural networks, such as feed-forward neural networks as we have seen

earlier, recurrent neural networks (RNNs) have a feedback mechanism and they are com-

monly used when the input data is sequential and of variable-length. To give an example, if

we would like to build a speech-to-text application, we would use previous words or utter-

ances to narrow down the possibilities for the word spoken now. Similarly, if we would like

to build an automatic question answering system, we would want to keep relations between

the current word and the words in a few sentences earlier if they are related in context. It’s

unclear how a feed-forward neural network could use its reasoning to achieve this.

FIGURE 2.4. A recurrent neural network with its unfolded time steps

As we can see in Figure 2.4., an unfolded (unrolled) RNN depicts its different states in

different time steps with each time step processing of another data point (different states).

The key part here is sharing the parameters U, V,W that allow hidden state st to depend on

the previous one, so that, it can capture information about all previous time steps. Hidden

state at time step t can also be denoted as below:

st = gt(xt, xt−1, xt−2, · · · , xt1) (55)

18

Figure 2.4. shows an RNN being unrolled into a full network which is a simplified depiction

of the network for the complete sequence where xt, st, ot are the input data (word), hidden

state and output at time step t respectively. Hidden state st (memory of the network) is

computed based on the previous hidden state and the current input at this step. The equation

of the computation can be found below:

st = f(U.xt +W.st−1 + b) (56)

where f is a non-linearity function which is usually a tanh or sigmoid.

ot is the output at time step t which gives us a vector of probabilities across the vocabulary

and the vector can later be used for prediction purposes.

ot = V.st + c (57)

pt = softmax(ot) (58)

Backpropagation Through Time (BPTT) Similar to traditional neural networks such as

feed-forward neural network we define a loss function (cost function) to find good parameters

U, V,W that minimize the error. A proven choice for this is to use cross-entropy loss which

is fairly common because of its simple ability to compute how far the predictions are away

from the labels.

L(y, o) = − 1

N

∑
nεN

yn. log on (59)

For the simplicity of the examples, we take L as the summation of loss at every time step

which is L =
∑

t Lt.

19

Given that time step t = 1 · · ·T , taking the derivative of the loss L with respect to output ot

takes the form:

∂L

∂ot
=

∂L

∂Lt
.
∂Lt
∂ot

(60)

∂L

∂ot
= 1.δot (61)

Since the loss function L is known δot can be computed. Similarly, the derivative of the loss

L with respect to hidden state at the last time step sT can be computed as below:

∂L

∂sT
=

∂L

∂oT
.
∂oT
∂sT

(62)

∂L

∂sT
= δoT .V (63)

However the derivative of the loss L with respect to any hidden state st is not so trivial to

compute as we can see in the equation below. This is mainly because the derivative has

effects in two different direction: (1) changes in current output ot and (2) changes in the next

hidden state st+1.

∂L

∂st
=
∂L

∂ot
.
∂ot
∂st

+
∂L

∂st+1

.
∂st+1

∂st
(64)

δt = δoT .V + δt+1.W (1− tanh2(U.xt +W.st−1 + b)) (65)

δt = δoT .V + δt+1.W (1− s2t) (66)

This equation clearly implies that each δt depends on the next δt+1 and just like the back-

propagation we see in traditional neural networks, we go until the last time step T and after

computing its value we compute backpropagate to compute the previous ones, hence the

name backpropagation through-time (BPTT).

Assuming BPTT is applied to compute the derivatives of loss L with respect to hidden states,

20

we can now compute the derivatives of loss L with respect to the parameters U, V,W effec-

tively such as these:

∂L

∂V
=

∑
t

∂L

∂ot
.
∂ot
V

(67)

∂L

∂V
=

∑
t

δot .st and (68)

∂L

∂W
=

∑
t

∂L

∂st
.
∂st
W

(69)

∂L

∂W
=

∑
t

δst .
∂st
W

(70)

2.2.2.2. Long-Short Term Memory Networks

Although using BPTT we can compute the derivatives which can later be used to update the

parameters in theory, however in practice the multiplication of multiple derivatives has ten-

dency to cause one of the two problems called exploding or vanishing gradient problem.

That means multiplication of the derivatives through the time steps will tend to be either

very large or very small. Unlike traditional neural networks with only a few layers subject

to backpropagation, RNNs (or any other deep neural networks) have many time steps (or

layers) that cause this problem and it is a major obstacle that prevented RNNs to be used in

any real world applications. More detail can be found on vanishing gradient in [12] which is

a German article describing the problem and in another survey [13].

To give a simple example, assume that all values are scalar θ and given that number of time

steps T goes to∞, then the result θT goes to∞ if θ > 1 or goes to 0 if θ < 1. To interpret this

situation, a vanishing gradient leads to misleading results which has the wrong impression

that the network is learning but in fact strays around and does not guide to minima. Gradients

from a few time steps back does not contribute to the learning process. Exploding gradient,

contrarily, results in taking big learning steps and consequently passes by minima and never

reaches it. But clipping the gradients at a pre-defined threshold is an effective solution to

21

this issue. That’s why vanishing gradient is more problematic since it is not obvious when to

occur or how to handle it.

In order to prevent the vanishing gradient problem, Long Short-Term Memory (LSTM)

[14] and Gated Recurrent Unit (GRU) [15] architectures are proposed and widely adopted

in the literature in recent years.

FIGURE 2.5. Input, forget and output gating mechanisms of an LSTM network. [15]

LSTM offers a number of gating mechanism to be able to decide how much of the old in-

formation it wants to keep. It is called gate because of the sigmoid function which outputs

a vector with values between 0 and 1 from its input vectors. The mathematical definition of

LSTM is as follows (See Figure 2.5.):

i = σ(xtU
i + st−1W

i) (71)

f = σ(xtU
f + st−1W

f) (72)

o = σ(xtU
o + st−1W

o) (73)

g = tanh(xtU
g + st−1W

g) (74)

ct = ct−1 ◦ f + g ◦ i (75)

st = tanh(ct) ◦ o (76)

22

As we can see in the equations above; input i, forget f and output o gates are almost the same

sigmoid functions except for their different parameter vectors and they decide how much of

the previous hidden state for the current input the network wants to keep. Hidden state g is

the same function as the hidden state computation of RNNs, but this hidden state is used as an

internal (or candidate) state to compute the real hidden state. Another mechanism of LSTM

is the memory of the network, ct, that is used to decide how much of the old memory to keep.

Finally, using ct and the output gate, the new hidden state is computed. The important thing

to notice here is the gating mechanisms that allow to forget/keep some of the old hidden

states in order to prevent vanishing gradients during matrix multiplication.

2.2.3. Convolutional Neural Networks

Convolutional neural network (CNN) is a special kind of artificial neural network which

makes use of convolution instead of standard matrix multiplication such a way that it is

specifically designed to exploit certain image-specific properties. CNNs are usually used in

image processing (i.e. object detection, pattern recognition). They are also used for learning

character-level features in natural language processing tasks.

Typically, compared to a feed-forward neural network, a CNN consists of a number of con-

volutional and pooling layers along with fully-connected (affine) layers. Convolutional layer

is the one that computes the dot product of neuron weights and a region of the previous layer

(input volume). Fully-connected layer is similar to a layer of a regular fully-connected neural

network. Pooling layer, on the other hand, performs a subsampling operation which results

in dimensionality reduction with the aim of keeping most of the significant information. Fi-

nally, the network can be trained using gradient-based optimization like a traditional neural

network to update parameters.

23

FIGURE 2.6. An example of CNN architecture for image recognition. Each con-
volutional layer captures another set of features from the previous layer. Source:

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

2.2.3.1. Convolution

A convolution in mathematics is an operation of shifting/sliding a function w over another

function x and computing the overlap between them while doing so. This can be expressed

by this equation:

s[t] = (x ? w)(t) =
∞∑

a=−∞

x[a]w[t− a] (77)

where s[t] is the convolution function over t, t and a are the positional arguments that move

function w over function x. This operation is adapted to process multi-dimensional input and

a kernel (window) function is used as the shifting function with the aim of capturing valuable

features of the image which is being processed. Hence the equation becomes:

s[i, j] = (I ? K)[i, j] =
∑
m

∑
n

I[m,n]K[i−m, j − n] (78)

where I and K are the multidimensional input and kernel functions respectively, i and j are

the positional arguments. As we have seen in feed-forward neural networks, the network

consists of multiple layers that each one of them contains a set of neurons. Each one of these

neurons is connected to all neurons in the previous layer and naturally these connections have

different weights to learn. Due to the fact that size of images can be varied and comparably

high, a neuron in the first layer of a network should compute a huge number of weights. For

24

example, to encode an image with the size of 1920×1080×3 (width x height x depth, depth

is the color channel: e.g. R, G, B), a neuron should have 1920×1080×3 = 6220800 weights

to train. Assuming a number of layers and a much more neurons, this naturally leads to a

high number of neurons which is an unmanageable network and prone to over-fitting. CNNs

overcome this problem such that neurons of a layer does not connect to all neurons of the

previous layer which is succeeded by using a smaller kernel than the input and that allows

to capture only the necessary features. Another outcome of using a smaller kernel is that the

weights of the kernel are shared during shifting which naturally leads to a reduced number

of trainable parameters.

Parameters of a convolutional layer are actually learnable filters that each of them is small

along width and height (spatially) but is full-length in depth (e.g. 6x6x3). During forward

pass, each filter is slided (convolved) over a region of the input volume (along width and

height). As they slide, each one produces a 2D activation map which is a set of values

computed by dot products of the filter entries and the input at a related position. So it can

be concluded that each filter ”learn to activate” for a particular set of features (e.g. edges of

images, faces). While filters of previous convolutional layers learn to activate for, say, edges

of a plane wing, filter of next convolutional layers may learn to active for whole image of the

plane.

Sparse Connections As we have briefly explained, each neuron of a convolutional layer

connect to only a sub-region of the previous layer (i.e. input volume/matrix). The hyperpa-

rameter of this connectivity that determines the spatial extent is called the filter size. How-

ever, the size of the depth is a constant which is always the full-length of the depth. For

example, assume that we have an image of size 48x48x32. With a filter size of 3x3, each

layer in the convolutional layer would have (3x3x32) 288 connections to the input volume.

Spatial Arrangement The neuron and their arrangement in the output volume is another

different approach CNNs take. There are three different hyperparameters that determine this:

25

• Depth: of the output volume is closely related to the number of filters. Meaning, a

depth column (or fibre) is a set of neurons which are connected to the same region.

• Stride: determines how many steps (pixels) we move our filters. For example if the

stride is 2, then filters would have move two pixels at a time. As a result, we would

have a relatively smaller output volume along width and height axes.

• Padding: is the operation of padding zero the input volume which allows us to preserve

the spatial size of the input volume.

FIGURE 2.7. Examples of stride=1 on the left and stride=2 on the right. We can see smaller
output when a bigger stride value is used. Source: http://cs231n.github.io/convolutional-

networks/

After convolution, an activation (non-linear) function is applied to the output. This stage is

called detector and the output is usually followed by a pooling layer.

2.2.3.2. Pooling

In order to reduce the amount of parameters and try to prevent overfitting, pooling is com-

monly used between successive convolutions. Pooling can be seen as summary of the fea-

tures we need to learn most which reduces the computational cost.

Using a specific operation (e.g. max pooling, average pooling, L2 norm), the pooling com-

putes a fixed function without parameters on every depth slice of the input and resizes it

along width and height. In order to better understand this operation, assuming the size of in-

put as W1xH1xD1, it requires only two fixed hyperparameters which one of them is spatial

26

extent F (filter size), and the other is the stride S. As output, it computes a volume of size

W2xH2xD2 where

W2 = (W1 − F)/S + 1 (79)

H2 = (H1 − F)/S + 1 (80)

D2 = D1 (81)

FIGURE 2.8. An example of max pooling operation. Source:
http://cs231n.github.io/convolutional-networks/

As we have earlier mentioned, there are different pooling operations; max pooling and aver-

age pooling to be the most common ones. Max pooling is usually preferred to make use of

”extreme” features. Assume that there are mostly smaller values in a filter and only a few of

bigger ones, by using max pooling, we will lose information about smaller ones. While max

pooling only takes the maximum-valued feature (”activation”) into account, average pooling

uses the average of all features in a filter. When bigger values are balanced by smaller val-

ues in a filter, then average values seem like less significant for an average pooling however

this way it retains more information about smaller ones. To conclude, there is not any best

pooling operation to fit all cases but the choice usually depends on the dataset and the task.

27

FIGURE 2.9. An example of difference between max pooling and average pooling

NLP Adaptation Although we have seen how CNNs can be used effectively in image

processing, we have not yet discussed how to use CNNs for NLP tasks or build effective

models with it.

When we use CNN for an NLP task, such as NER, the input to our network is naturally

matrices of sentences instead of images. As we have previously seen for LSTM, each row

of the matrix is a word representation. This word representation is usually word embeddings

(e.g. word2vec [7], FastText [8]) or a one-hot vector. In order to ”convolve” filter over the

input, filters with full-width of the rows are used. So that a filter should take full row (length

of word) into account while sliding over. That’s why as a preprocessing step all words are

usually zero-padded to preserve the same width. There is no explicit rule for height of the

28

FIGURE 2.10. An example of CNN architecture for sentence classification. [16]

filter but usually 2-5 is used to slide over a few words at a time.

In most of the NLP tasks, the position of where a word appears in a sentence is very sig-

nificant. In addition, words that are far apart to each other can be semantically related and

therefore also important. These important aspects cannot be captured by CNN but in re-

searches conducted in the recent years, we can clearly see that CNN performs very well on

many NLP tasks including NER. This is mostly contributed to how fast they are trained and

how efficient they are in terms of word (or character) representations. As a result we have

also experimented with character-level CNN to learn good features of words before feeding

them into a word-level LSTM that we have discussed earlier.

29

2.3. Word Representations

Representing the words by a fixed dimensional vector with the help of neural networks have

shown superior performance in the recent years.

Words (or tokens) are usually mapped to discrete numeric values so that we can mathemati-

cally represent them. But using unique vectors for each word such as one-hot vector where

a word is represented by 1 in one bit and 0s everywhere else, leads to sparsity problem since

the cardinality of vectors must match the vocabulary size. This method also does not en-

code any information about words or relationships between them. However, by using word

embeddings, we can represent words in a dense vector space while keeping information and

relationships between them as much as possible.

2.3.1. Word2vec

Word2vec [7] is a computationally-efficient word representation algorithm that is designed

to represent words without losing their semantic knowledge in a dense vector space [7].

There are two different models of word2vec, namely Skipgram and continuous bag-of-words

(CBOW). Skipgram is trained to predict the surrounding words based on the current word.

CBOW, on the other hand, is trained to predict the current word based on the context words.

In this regard, the aim is to find good word representation for the predicting the surrounding

words. Given a corpus of T , the objective is to maximize the probability that:

arg max
θ

∏
w∈T

[
∏

c∈C(w)

p(c|w; θ)] (82)

arg max
θ

∏
(w,c)∈D

p(c|w; θ) (83)

where p(c|w; θ) is the probability of context word c given that word w and C(w) is the

context words of word w. Finally D denotes the set of all word-context word pairs in the T .

30

Probability of context word can be represented as follows:

p(c|w; θ) =
εvc.vw∑
c′∈C ε

v′c.vw
(84)

where vc, vw ∈ IRd are the vector representations of context word c and word w respectively

and C represents the set all of context words. After applying log function to switch to

summation, the aim is to find good parameters that give rise to the following equation:

arg max
θ

∑
(w,c)∈D

logp(c|w) =
∑

(w,c)∈D

(logεvc.vw − log
∑
c′∈C

εv
′
c.vw) (85)

Although this can be computed, it is noted in the paper that this is computationally very

expensive due to the summation over all the context words c′ and they argue that the full

probabilistic model is not needed and instead a binary classification objective can be used

with the aim of differentiating the target words from the noise words in the same context. In

order to find parameters that maximize the probability of all the observations come from the

data (all observations are target words not noise words), they change the objective function

such that:

arg max
θ

∏
(w,c)∈D

p(D = 1|w, c; θ) (86)

= arg max
θ

log
∏

(w,c)∈D

p(D = 1|w, c; θ) (87)

= arg max
θ

∑
(w,c)∈D

logp(D = 1|w, c; θ) (88)

where p(D = 1|w, c; θ) denotes the probability that the pair of (w, c) comes the corpus data,

and similarly p(D = 0|w, c; θ) = 1 − p(D = 1|w, c; θ) denotes the probability that the pair

of (w, c) does not come the corpus data. Using softmax on the probability, the objective

31

function becomes:

arg max
θ

∑
(w,c)∈D

log
1

1 + ε−vc.vw
(89)

This can be solved if the set of parameters θ is set such that the probability p(D = 1|w, c; θ)

becomes 1 for every pair of (w, c). In this regard, the parameters vc = vw must be equals such

that the product of them K is large enough. As a consequence another mechanism must also

be used to prevent that all vectors from having the same value. This is done by presenting

some (w, c) pairs that are not in the data. To do so, a randomly-generated pairs are produced

as ”negative samples” so that the objective function becomes:

arg max
θ

∏
(w,c)∈D

p(D = 1|w, c; θ)
∏

(w,c)∈D′
p(D = 0|w, c; θ) (90)

= arg max
θ

∏
(w,c)∈D

p(D = 1|w, c; θ)
∏

(w,c)∈D′
1− p(D = 1|w, c; θ) (91)

= arg max
θ

∏
(w,c)∈D

logp(D = 1|w, c; θ)
∏

(w,c)∈D′
log(1− p(D = 1|w, c; θ)) (92)

= arg max
θ

∑
(w,c)∈D

log
1

1 + ε−vc.vw
+

∑
(w,c)∈D′

log(1− 1

1 + ε−vc.vw
) (93)

= arg max
θ

∑
(w,c)∈D

log
1

1 + ε−vc.vw
+

∑
(w,c)∈D′

log(
1

1 + εvc.vw
) (94)

This is a binary logistic regression probability where high probabilities are assigned to the

real words wi in the corpus D and low probabilities for the noise words in D′. It is again

noted that optimization of loss function corresponds to the number of noise words instead

of the whole vocabulary. Another important peculiarity of this approach is that the model

learns both the word representation and context representation simultaneously which makes

it non-convex.

32

2.3.2. FastText

FastText [8] is another word representation technique based on Skipgram model of word2vec

and it represents each word with a collection of character n-grams. Given a word w, a set

of character n-grams Gw is generated. For example, for a word heceleme (meaning spelling)

and n = 3, these are the n-grams;

< he, hec, ece, cel, ele, lem, eme,me > (95)

Additionally, the word itself w (e.g ”heceleme”) is added to the Gw to allow it to learn the

vectorial representation of the whole word. By using character n-grams, FastText can even

represent out of vocabulary (OOV) words by generating their vectorial representation from

their vectors of n-grams. This concept makes it suitable for especially morphologically-

rich languages such as Turkish because of the extensive number of rare words, unlike other

word representation algorithms where they represent each word in a vocabulary with a single

unique vector and fail to handle out-of-vocabulary words by doing so.

Due to the fact that FastText is an extension of Skipgram model of Word2vec, we will first

discuss the Skipgram model and then provide the extension to explain FastText. Given that

we have a set of words with the size T and each word is indexed by t ∈ {1, ..., T}, objective

function is

T∑
t=1

∑
c∈Ct

logp(wc|wt) (96)

where Ct is the set of context words and a word is a context word if it surrounds the word

wt. Assume that we have a predefined score function s that outputs scores given a word wt

and its context Ct. Given wt the probability of wc can be defined as

p(wc|wt) =
εs(wt,wc)∑W
j=1 ε

s(wt,j)
(97)

33

Despite this probability can be interpreted as the prediction of a single context word wc

surrounding wt, we would like to compute the probability of the presence of multiple context

words. Given a word wt, its surrounding (context) words can be used as positive example

and some other (non-context) words can be used as negative examples in this regard:

log(1 + e−s(wt,wc)) +
∑
n∈Nt,c

log(1 + es(wt,n)) (98)

Here Nt,c is the randomly-sampled negative examples. Using a vectorial representation for

word wt and one of its context words wc, the aforementioned score function s can be defined

as

s(wt, wc) = uᵀwt
.vwc (99)

where uwt is the vector of wt and vwc is vector of wc. This log-likelihood and scoring func-

tions are the proposed solution by Skipgram which does not take morphological structure

into account.

In FastText, given that a word w is decomposed to its n-grams Gw ⊂ {1, ..., G}, it has been

proposed a different scoring function as follows:

s(w, c) =
∑
g ∈Gw

zᵀg .vc (100)

where zg is the vectorial representation of an n-gram g of word w. Using vectorial represen-

tation of n-grams allow it to share some of the parameters between words and, thus, learn

meaningful representations for OOV words.

34

FIGURE 2.11. Architecture of morph2vec with an attention mechanism on top of bi-LSTMs.
[9]

2.3.3. Morph2vec

Morph2vec [9] is another method learning to generate word representations from its subword

information. It generates a group of candidate word segmentations and learns the vectorial

representation of word from these candidate segmentations using an attention model. With-

out using any external morphological segmentation tool that produces one segmentation for

a word, this unsupervised approach generates a number of candidate segmentations in which

all of them contribute to the final word representation.

35

Each morphological segmentation (morpheme) of a word has its own representation and word

representation of a group of segmentation is computed as follows

vsi = f(wsi) = f(vm0 , ..., vmn) (101)

where vmi
is a vector of morpheme mi with a dimension of dword. With the aim of obtaining

a function f , bidirectional LSTM is trained on the morphemes of a word. Then an attention

mechanism is used on top of bidirectional LSTMs to optimize segmentation weights αi.

Summation of these segmentation weights is 1.

Sw∑
i

α = 1 (102)

where Sw is the set of all segmentations of word w.

Finally using these weights αi and vectorial representation vi of segmentation si that we

obtain from bidirectional LSTM, the word representation can be computed as follows:

fattn(w) =
∑
i

αi.vsi (103)

In order to train the model, an objective (loss) function is defined which aims to minimize the

cosine distance between the word vectors of this model and pretrained word vectors obtained

from a word2vec model. The objective function is as follows:

J(θ) =
N∑
i=k

h(wk) +
λ

2
. ‖θ‖22 (104)

where N is the size of the training set and h(wk) is the cost function of word wk.

36

2.4. Transfer Learning

As a machine learning technique to improve performance of the model, transfer learning is

the process of using knowledge learned from a source task in another (target) task, so that the

model improves its results on the target task. Transfer learning approaches can be grouped

into three categories as suggested by [17]:

• Cross-domain transfer: aims to transfer knowledge from a domain to another domain

with preferably fewer labeled data in the same language. These two domains may or

may not have mappable label sets.

• Cross-application transfer: aims to transfer knowledge from an application to an-

other application in the same language such as POS tagging, chunking and named

entity recognition where all of them are different applications of sequence labeling.

• Cross-lingual transfer: aims to transfer knowledge from a language to another one, as

the name suggests. This may be achieved only with languages that share the same al-

phabetical characters and have similar morphology, so that character-level information

can be exploited.

Transfer learning is accomplished by either (1) training a model on a source task and then

using this model as an additional source of knowledge to train another model on a target task

or (2) training a model on both source task and target task simultaneously while sharing some

of the parameters. We have taken the latter approach in this thesis. Here, the source task is

the named entity recognition on news data and the target task is the named entity recognition

on tweet (noisy) data which is smaller dataset and has comparably less number of labeled

entities.

37

FIGURE 2.12. Architecture of the proposed transfer learning model with separate CRF
layers for different domains. [17]

38

3. LITERATURE REVIEW

In this chapter, we thoroughly review the studies on Turkish named entity recognition on

both formal data and noisy/informal data. Similarly, we review the studies on English named

entity recognition with the primary focus of noisy data. We also explicate their related fea-

tures and word (and sub-word) level embedding techniques. Finally, the contributions made

for transfer learning are reviewed.

3.1. Named Entity Recognition on Turkish

We can group NER in Turkish into two categories, namely formal data and noisy/informal

data.

3.1.1. Studies on Formal Data

Gungor et al. (2017) [18] propose a similar model to that of Lample [4]; they use bidirectional-

LSTM along with CRF on top of it. Input to this model is a combination of word, character

and morphological embeddings. Firstly, character embeddings are learned using a character-

level bidirectional LSTM. Secondly, morphological embeddings are also learned similarly

using another bidirectional LSTM. Input to this morphological-level LSTM is a sequence of

tags retrieved from the morphological analysis. Thirdly, word embeddings are learned by

Skipgram model of Word2vec are concatenated with character embeddings and morpholog-

ical embeddings. This final embeddings is then fed into another bidirectional-LSTM which

is responsible for capturing the representations of words. The importance of using bidirec-

tional LSTM is to capture both forward and backward representations. Finally output of the

LSTM is used to decode the possible tagging sequence using CRF. With this model, they

have reported 93.59% F1 score for Turkish and 79.59% F1 score for Czech.

Şeker and Eryiğit (2017) [6] is the state-of-the-art on Turkish NER which proposes another

CRF-based model using an extensive set of features. They also provide the re-annotated

39

FIGURE 3.1. A CRF-based state-of-the-art Turkish NER model incorporating hand-crafted
features and gazetteers. [6]

versions of the two commonly used Turkish datasets: news dataset [19] and Twitter dataset

[20]. Re-annotated versions also include TIMEX and NUMEX types along with ENAMEX

types. In addition, they also annotated a new Turkish treebank from social media: ITU

Web Treebank (IWT) [21]. Proposed model uses respectively: tokenization, morphological

processing (morphological analyzer and morphological disambiguator) [22], data prepara-

tion (feature selection using morphological tags and gazetteers among others), and finally

CRF. During tokenization, punctuation characters including apostrophe are also considered

as a token. Morphological analyzer produces possible word analysis while morphological

disambiguator aims to select the most probable one, hence morphological processing out-

puts morphological tags for a given word. They also make use of two kind of gazetteers:

base gazetteer which is a list of person and location names (261K tokens) and generator

40

gazetteer which is a list of PLOs and currency units (156 tokens). During data preparation,

feature vectors are formed using the raw data, the gazetteers and the morphological tags.

They also noted that using IOB or IOBES (IOB2) decreased their model performance so,

instead, they used raw tags (e.g. ”PERSON” instead of ”B-PERSON”, ”E-PERSON”) dur-

ing training. Features used for CRF labeling include: morphological features (such as stem,

POS tags, noun case, proper noun, inflectional features), lexical features (case feature, is-

start-of-the-sentence), gazetteers lookup features, TIMEX and NUMEX related features (is-

numeric-value, has-percentage-sign, is-oclock-term, has-column-indicator, month gazetteer,

currency gazetteer). In order to adapt the model for user-generated content (noisy data), they

also used: auto capitalization gazetteer (a list of names with little chance of being used as

common nouns) as feature. Hence, they aim to differentiate proper names from common

nouns. Additionally, they used mentions as feature. Finally, they reported 67.96% F1 score

on TDS1 v4 (ENAMEX, TIMEX, NUMEX) [20], 56.02% (ENAMEX, TIMEX, NUMEX)

and %49.02 (ENAMEX) on TDS2 [23] [24], 51.61% (ENAMEX, TIMEX, NUMEX) on

TDS3 [25].

3.1.2. Studies on Noisy Data

Celikkaya et al. (2013) [20] is the first work that focus on user-generated/noisy data for

Turkish. They used conditional random fields (CRF) as the probabilistic model to label

data which has proved to be successful for overlapping features focusing on conditional

distribution. Thus making it a better choice to label sequential data such as NER. In order

to train CRF some hand-crafted morphological and lexical features such as stem, POS tag,

noun case, lower/upper case are used along with gazetteers. Another contribution is the

creation of three new datasets (forum, speech and twitter) which the Twitter dataset is also

the one we used for our NER research. Finally they reported 19.28% F1 score on Twitter

data and 91.64% on news data. This is also another indication that NER on noisy data does

not perform as well as NER on news texts.

41

Küçük and Steinberger (2014) [23] employs normalization scheme and proposes some ex-

pansion of existing lexical resources with the aim of adapting an existing rule-based NER

system for Turkish Twitter data. During tweet normalization phase; they removed consec-

utively repeated characters excluding the valid ones existing in a unique words list but this

resulted in removing some valid words (e.g. Çanakkale) if it is not in the unique words list.

Therefore, they first applied NER phase then used normalization for remaining words then

applied NER phase again. During NER phase, an existing lexical resource (list of person, lo-

cation, organization (PLOs) names and patterns for NE types time, date, money, percent and

PLos) are expanded based on the fact that most of the Turkish tweets misses the diacritics (ç,

ğ, ı, ö, ş, ü) resulting in ill-formed words (e.g. şiir [poem]→ siir or İstanbul→ Istanbul). As

a result, they achieved 53.45% F1 score on Tweet Set-1 [24] with normalization and 46.93%

F1 score on Tweet Set-2 [20]

Eken and Tantug (2015) [25] use another CRF-based approach in order to NER in Turkish

tweets. Instead of using morphological analyzers which do not give good results on noisy

data, they prefer to use first and last four characters of words. Additionally, in order to train

CRF on news data, they use these features as well: existing of apostrophe character, case

of the word, start of sentence, gazetteers for NE types of PLOs (with optional Levenshtein

distance-based matching). As a result they reported 46.97% F1 score on Tweets Set-1 which

is an imbalanced dataset provided by them, and 28.53% on Tweet Set-2 [20].

Okur et al. (2016) [26] is another important work due to being the first neural-network based

approach without language-dependent feature engineering on Turkish noisy data. Trained on

a news corpus (BOUN web corpus) of 423M words [27], [28] and 21M Turkish tweets [29],

they obtained word embeddings using Skipgram model of word2vec. We are also using

these embeddings for our pre-trained word vectors which further details can be seen in the

upcoming sections. Expending the work of [30], they use a regularized averaged multi-

class perceptron with the following features: context (window of two tokens), capitalization,

(BILOU) tags of previous two tokens, word type flags (all-capitalized, is-capitalized, all-

digits, contains-apostrophe, is-alphanumeric), first and last three (or four) characters of to-

ken, word embeddings obtained from word2vec. They also employ a tweet normalization as

42

a preprocessing step using the work of [31]. The normalization takes two phases: ill-formed

word detection and candidate word generation. For the first phase, a morphological analyzer

(Şahin et al., 2013) is used with the help of an abbreviation list and list of abbreviated words

so that all out-of-vocabulary words can be filtered out and sent directly to the second phase.

During the second phase which is basically a pipeline of seven different steps, the output

of each step is checked again by the morphological analyzer to detect if it became an in-

vocabulary word. If it is, then the word no longer continues the next step. Other steps that is

reported by them include: ”letter case transformation, replacement rules and lexicon lookup,

proper noun detection, deasciification, vowel restoration, accent normalization, and spelling

correction” [26]. They reported 48.96% F1 score on TwtDS-1 [20] with the model trained

on Turkish tweets (TwtDS-2 [24]) using word embeddings, normalization, and filtering out

non-Turkish. Furthermore, they also reported 56.79% F1 score on TwtDS-2 with the model

trained on Turkish news using word embeddings and normalization only.

3.2. Named Entity Recognition on English

We can also categorize NER in English into two categories; studies on formal and infor-

mal/noisy data.

3.2.1. Studies on Formal Data

Huang et al. (2015) [32] is the first paper in the literature that uses a combination of bidirec-

tional LSTM and CRF for the purpose of sequence labeling in NLP. They experiment with

a variety of these models including; LSTM, BiLSTM-CRF, CRF, LSTM-CRF, BiLSTM-

CRF and also their models incorporate a number of hand-crafted features such as spelling

features (capitalization, punctuation, various word patterns), context features (uni-gram and

bi-gram features) and Senna word embeddings [33]. Consequently, they report an F1 score

of 88.83% using the BiLSTM-CRF model and 90.10% using the same model and gazetteers

on CoNLL’03 dataset.

43

Chiu and Nichols (2015) [34] proposes a model of bidirectional LSTM and CNN without

heavy feature engineering. They extract character-level features using a CNN and then con-

catenates these with pre-trained word embeddings (either from Senna, GloVe or word2vec).

They also make use of some hand-crafted features such as lexicon features and character-

level features (capitalization, existence of uppercase, lowercase or punctuation). As a result,

they achieve an F1 score of 91.55% on CoNLL’03 dataset.

Lample (2016) [4] proposes a neural network model that uses no hand-crafted features or

external resources with specific domain-knowledge such as gazetteers. Consequently the

model achieves the state-of-the-art results in four languages on experiments conducted on

formal text. The proposed model is a combination of a bidirectional LSTM and CRF on top

of it. While BiLSTM is used to obtain word representations, CRF is responsible for tagging

named entities. As we have already seen, this is the base model for most of the newer NER

models evaluated on formal and/or noisy data.

FIGURE 3.2. Overview of the BiLSTM-CRF model [4]

44

In Figure 3.2., we can see the architecture of this model. Word embeddings are input to a

BiLSTM network that is used to capture right and left side context of the sentences. Thus the

concatenation of these two representations include the word representation in context. These

word representations are then fed into a CRF layer to label the named entities. CRF, as we

can see later in 2., is widely used for jointly tagging tasks such as POS tagging and NER.

This is because tagging usually comprises dependencies between different output labels and

CRF allows us to tag output labels while taking these dependencies into account. As tagging

scheme, IOBES is used to impose these dependencies (e.g. B-LOC must be followed by

either I-LOC or E-LOC, S-PER cannot be neighbor with any other PERSON tag.).

FIGURE 3.3. Word embeddings consists of pretrained word embeddings and character em-
beddings [4]

Word embeddings are obtained from pre-trained word embeddings and character represen-

tations which is output of another character-level BiLSTM network. The whole architecture

can be seen in Figure 3.3.. Pre-trained word embeddings are embedding trained on Word2vec

45

(Skipgram) model which is another dense vector representation adopted widely. Using an-

other BiLSTM network for word embeddings is to be able to capture any character-level

features. Similar to word-level BiLSTM, output of this network consists of left and right

context of words. Concatenation of these LSTM outputs and pre-trained embeddings form

the final word representations. They have also used dropout on the final word embeddings

just before word-level BiLSTM. This ensures the model does not solely depend on one of

the embeddings and therefore improves the performance. As a result, they achieved 90.94 F1

score on CoNLL’03 dataset for English which is a clear indication that using neural architec-

tures may also represent character-level and word-level features instead of using hand-crafted

features or depending on domain-specific resources.

Ma and Hovy (2016) [35] proposes a similar bidirectional LSTM-CRF model that incor-

porates word embeddings obtained from GloVe and character-level embeddings trained on a

CNN layer. They also use SGD with gradient clipping of 5.0 and learning decay rate of 0.05,

moreover, apply dropout operation before the CNN layer and before and after the bidirec-

tional LSTM layer. As a result they obtain an F1 score of 91.21% on ConLL’03 dataset.

3.2.2. Studies on Noisy Data

Ritter (2011) [36] proposes a pipeline incorporating a tweet POS tagger (T-POS), chunker

(T-CHUNK) and NE recognizer (T-NER) with hand-crafted features and dictionaries. T-

POS uses CRF with POS dictionaries, Brown clusters and some other unmentioned ”spelling

and contextual features”. T-CHUNK, again, also uses CRF with POS tag outputted by T-

POS, Brown clusters and some other features.They also use a capitalization classifier (T-

CAP) with the aim of determining whether a tweet has informative capitalization or not.

Informative capitalization is when a tweet is properly capitalized. They use SVM for training

this classifier. Finally they use CRF with previously mentioned/outputted features for NE

segmentation and apply LabeledLDA for NE classification. During this step, they also make

use of lists of entity-type pairs gathered from Freebase dictionaries.

46

In order to mention briefly, LabeledLDA (Labeled Latent-Dirichlet Allocation) [37] is a

probabilistic topic model that aims to associate a label with a topic. LabeledLDA is a strong

generative model in the sense that it can model ”each document with as a mixture of under-

lying topics and generates each word from one topic” [37]. LabeledLDA is an extension of

traditional LDA with a supervised approach that limits the topic model from a set of label.

In [1], winner of 3rd workshop on WNUT’17, proposes a multi-task learning approach that

provides both NE segmentation and NE categorization using a conditional random fields

(CRF) fed by features extracted from a character-level convolutional neural network (CNN)

and a word-level bidirectional long-short term memory (LSTM). The features for character-

level CNN are extracted from an orthographic encoder which is similar to that of [38] and

used to represent orthographic characteristics of a word such as capitalization, punctuation.

CNN is, therefore, used to learn word shapes and orthographic features. CNN architec-

ture consists of two stacked convolutional layers followed by global average pooling and

fully-connected layer with ReLU activation function. On the other hand, the features for

word-level bidirectional LSTM are Twitter word embeddings from Skipgram model using

word2vec and POS tag embeddings. As a result, bidirectional LSTM with 100 neuron for

each direction learns both forward and backward representations of words. Additionally, lex-

icons for each NE category are fed into a fully-connected layer with 32 neurons and ReLU

activation function. Resulting vectors which obtained by concatenating character-level em-

beddings, word-level embeddings and lexicon vectors, are fed into the multi-task network

where a single-neuron layer with sigmoid function is used for NE segmentation task whereas

a 13-neuron layer with softmax function is used for NE categorization task. Addition of both

losses are used during training and finally output of the network is used to feed CRF-layer in

order to jointly predict the sequence of labels. Using this methodology, they achieved 41.86

F1 score on entities and 40.24 F1 score for surface forms.

In another work [39], comprehensive word embeddings with multi-channel information are

used in a bidirectional LSTM-CRF network ”without using any hand-crafted features such

as gazetteers or lexicons” [39]. Following the example of [4], word embeddings are made of

47

pre-trained word embeddings and character-level embeddings obtained from another bidirec-

tional LSTM. They also incorporate syntactical information by using POS tags, dependency

roles and word position in the sentence and head position. Concatenation of these embed-

dings results in the final word embeddings which is then fed into the word-level bidirectional

LSTM and CRF layers. In order to obtain POS tags and dependency roles, TweeBank is used

as part of the syntactic information. Moreover, for pretrained word embeddings, GloVe is

used with dimension of 100. Finally, they achieved 40.42 F1 score for entity-level and 37.62

F1 score for surface-forms.

Another participant of WNUT’17 [40], uses a CRF as an ensemble-based approach which

uses features learned from CRF, support vector machine (SVM) and an LSTM. For CRF-

based features, a CRF was trained with L2 regularization and with a group of hand-picked

features such as POS tag, local context, chunk, suffix and prefix, word frequence and a

collection of flags (is-word-length-less-than-5, is-all-digit etc.). For SVM-based features,

an SVM classified is built with polynomial kernel with the same features used for CRF-

based model above. Thirdly, for LSTM-based features, two different LSTM networks are

used which the first one is used to find out NE boundaries then this is used as input to the

second one which aims to identify NEs with the help of a collection of hand-picked features

and pre-trained embeddings of 150 length which is learned from word2vec. Finally, the

output of these three models are concatenated and fed into another CRF layer to predict the

final sequence of NE labels. It is noted that this final CRF layer is used as a selector in

the ensemble with the aim of utilizing output of three models. Consequently, they achieved

38.35 F1 score for entity-level and 36.31 F1 score for surface forms.

[41] tries a statistical approach, context-sensitivity, where each word is associated with its

contexts and context conditional probabilities are used to figure out NE tag probabilities. For

entities with multiple words, a pre-determined threshold value and harmonic mean of word

likelihood values are used to determine a potential NE membership. As a consequence of us-

ing probabilistic approach, for the conflicting situations where a token is predicted for multi-

ple NE membership; (1) predictions appeared first, (2) longer predictions and (3) predictions

with higher likelihood have higher precedence respectively. TO achieve better results, in

48

addition to WNUT’17 dataset, WNUT’16 dataset and a group of lexicon and external dictio-

naries are also used. In conclusion, they achieved a result of 26.30 F1 score for entity-level

and 25.26 F1 score for surface forms.

In [42], inspired by the work of [38], a bidirectional LSTM-CRF model is used but instead

of orthographic features from the original work, LDA topic modeling and POS tags are cho-

sen. Character embeddings are obtained from a character-level bidirectional LSTM which

are then fed into word-level bidirectional LSTM along with pretrained word embeddings

extracted by GloVE. Finally, another bidirectional LSTM is used to obtain word representa-

tions. The input to this LSTM is the concatenation of word embeddings from the previous

LSTM, POS tags obtained from GATE and LDA topics. In order to generate topics, a com-

bination of three different datasets is used where each entry (e.g. tweet) is handled as one

document. After training of 250 topics, for each word a document-level and word-level top-

ics are assigned as 250-dimensional embeddings. Final output of the last LSTM is then fed

into CRF layer. Additionally two fully-connected layers are used between the last LSTM and

CRF layers in order to better capture higher order representations. As a result, they achieved

a performance of 39.98 F1 score on entity-level and 37.77 F1 score on surface forms.

3.3. Transfer Learning

Yang et al. (2017) [17] propose a comprehensive framework for transfer learning in named

entity recognition. Transfer learning is the procedure of improving the performance of a tar-

get task by incorporating knowledge from a source task. Three different neural architectures

are presented in this framework that all of them are based on a (character-level NN + word-

level NN + CRF) model, similar to [4]. It is stated that neural layers in these architectures

can be either CNN or LSTM. The first architecture targets cross-domain transfer learning

by applying label mapping on top of the CRF layer. The second architecture is applicable

when there are two sequence labeling tasks with different label sets for the same language

(e.g. POS tagging and NER). Two different CRF layers are used to tackle this problem while

49

sharing all other NN layers and their parameters. The third architecture is presented as so-

lution to multi-lingual transfer learning by sharing the same character-level representations

between two different (word-level NN + CRF) models. As a result, they have achieved an

F1 score of 91.26 for NER on CoNLL2003 dataset and 95.41 for chunking on CoNLL2000

dataset. Comparison of results on formal data can be further analyzed in Table 3.1..

TABLE 3.1. Comparison of results of different studies on different formal data

Model CoNLL2000 CoNLL2003 Spanish Dutch
Ma & Hovy (2016) - 91.21 - -
Luo et al. (2015) - 91.20 - -
Collobert et al. (2011) 94.32 89.59 - -
Huang et al. (2015) 94.46 90.10 - -
Yang et al. (2017) 95.41 91.26 85.77 85.19
Lample et al. (2016) - 90.94 85.75 81.74

von Däniken (2017) [43] which obtained the second position in WNUT’17, uses sentence-

level features and exploits additional annotated data for a bidirectional LSTM-CRF network.

To be more precise, the combined model consists of two different CRF layers which one of

them is trained on WNUT’17 dataset whereas the other one is trained on WNUT’16. The

architecture of this proposed model can be seen in Table 3.4.. The aim is to improve gen-

eralization ability by incorporating both datasets. Input to these CRF layers are shared and

contains sentence-level features and word-level features obtained from a bidirectional LSTM.

For sentence-level features, they use sent2vec which introduced by [44] and for word-level

features, they use (1) word embeddings obtained by FastText on both of the datasets and

a corpus of 200 million tweets, (2) word capitalization features (3) character convolution

features obtained by a character-level CNN and (4) character capitalization convolution fea-

tures. As a result, they obtained entity-level 40.78 F1 score and 39.33 F1 score for surface

forms.

Enghoff et al. (2018) [45] propose a cross-lingual transfer learning model with the main

focus of annotation projection from multiple sources to target dataset of the low-resourced

language. The proposed model requires a parallel corpora which has many languages with

parallel sentences and that each language has its own NE tagger. Parallel corpora is obtained

50

FIGURE 3.4. Architecture of Transfer Learning in a BiLSTM-CRF network [43]

by using unsupervised sentence and word aligners that assign confidences to each tokens as

weights. Since each token in these source languages are assigned to NE types with different

probabilities, and each aligned token has a weight (aligner confidence), predicting NE label

of the target language is the weighted sum of the NE probabilities of its associated (aligned)

tokens in different languages, hence the annotation projection. The NE label of the target

token is then either selected by (1) selecting the NE label with the highest probability or

(2) by training a NE tagger on the projection with some normalization. The experiments

are conducted on two different parallel corpus; Europarl and Watchtower where the first one

covers 21 languages with rich resources in quality and quantity and the latter one covers

51

more than 300 languages with low-resource, low-quality data. As a result, they achieved a

mean F1 score of 60.7% with n = 3 source languages and a mean F1 score of 62.23% with

optimal number of source languages nmax on Europarl. However, they achieved a mean F1

score of 16.3% with n = 3 source languages and a mean F1 score of 21.12% with optimal

number of source languages nmax on Watchtower.

52

4. THE PROPOSED MODEL

In this chapter, we first explain our word (and sub-word) embeddings which are used as input

to train the neural architectures. We, then, detail our baseline model which is a basic LSTM-

CRF architecture, then present our proposed, transfer learning, model which is an extension

of the baseline model by incorporating another CRF layer in order to train the model on two

datasets simultaneously with the aim of a better generalization.

4.1. Word Embeddings

We use dense vector representations of words as input to our baseline and transfer learning

models. These vector representations, named embeddings, are the concatenation of different

embedding techniques such as FastText [8], word2vec [7], morph2vec [9] and orthographic

character-level embeddings. By using these techniques, we aim to capture orthographic,

morphological and contextual information of words ”without using any hand-crafted features

such as lexicons or gazetteers” [4]. An overview of our approach can be seen in Figure 4.1..

4.1.1. Orthographic character-level embeddings

Following the example of Aguilar et al. [1], we use an orthographic character encoder that

encodes alphabetic characters with their orthographic counterparts such that;

• Every alphabetic character becomes a ”c” or a ”C” if the character is capitalized

• Every numeric character becomes an ”n”

• Every punctuation character becomes a ”p”

Additionally we have also replaced any non-ascii characters (e.g. some foreign or deteri-

orated characters) with an ”x”. We did not replace any white space characters. Thus, an

example sentence of;

53

FIGURE 4.1. Overview of the final word embeddings. After concatenating embeddings ob-
tained from fasttext, word2vec, morph2vec and orthographic character-level embeddings, we
also apply dropout for better generalization and consequently, obtain the final word embed-

ding for a word.

All 3 of them say ”Jina did it”...

is encoded as

Ccc n cc cccc ccc pCccc ccc ccPppp

This allow us to reduce sparsity and capture shapes and patterns of words. Additionally, an

embedding lookup table where each orthographic character (i.e. ”c”, ”C”, ”p”, ”x”) has an

embedding vector is initialized using uniform Glorot initialization. This initialization method

54

ensures that prior to training the embeddings are uniformly distributed between [−n,+n]

where n is the sqrt(6/(ninputdimension + noutputdimension)). After generating the orthographic

character-level embeddings of words, these embeddings are fed into a bidirectional LSTM

(Long-Short Term Memory) which is simply two different LSTM networks where one of

them takes input sequence in reverse order. During training, both the parameters of these

LSTM networks and the embeddings are updated accordingly. Output of these forward and

backward LSTM networks are then concatenated. We argue that this approach ensures the

model can learn better representations of orthographic (i.e. capitalization, punctuation marks,

numerical characters) and character-level features (i.e. prefix, suffix) without using any hand-

crafted features. We set the dimension of hidden layers of the bidirectional LSTM as 30

which results in embeddings with a dimension of 60. Figure 4.2. presents the overview of

the approach.

FIGURE 4.2. Character-level word embedding using a bidirectional LSTM

As an alternative approach, we also trained a character-level Convolutional Neural Network

55

(CNN), following the example of Aguilar et al. [1]. We used the same character embed-

ding size similar to that of bidirectional LSTM and set maximum word length as 20. We

padded shorter words with zeros and truncated the longer ones. Then, we apply two-stacked

convolutional layers and perform global average pooling to the output. Finally, we use a

fully-connected feed-forward layer with a Rectifier Linear Unit (ReLU) activation function.

Hidden dimension of this layer is 32. An overview of this alternate approach can be seen in

Figure 4.3.. Although CNNs are networks that are designed to extract position-invariant fea-

tures, we argue that orthographic and character-level features are not position-dependent so

that CNNs can also be effectively used as much as LSTMs to learn valuable character-level

features.

FIGURE 4.3. Character-level word embedding using CNN. Source: Aguilar et al. [1]

56

4.1.2. Word2vec

Proposed by Mikolov et al. [7], word2vec is an efficient word representation algorithm where

the syntactic and semantic relations between words can be effectively captured. In order to

represent the words in dense word embeddings with this syntactic and semantic knowledge,

we use pre-trained embeddings trained on a corpus of 400M English tweets [46]. Similarly,

we use pre-trained embeddings that is trained on a news corpus (BOUN web corpus) of

423M words [27], [28] and 20M Turkish tweets [29]. Embedding dimension of words is 400

for both English and Turkish.

4.1.3. FastText

As we have already discussed in Chapter 2, FastText [8] is another word representation tech-

nique that is similar to word2vec but comparably better at capturing word representation ”for

morphologically-rich languages such as Turkish” [8]. This is due to its ability to form vecto-

rial representation of words from their vectors of character n-grams. As a result, this allows

us to generate word embeddings using n-grams even for out-of-vocabulary words which is a

common case for noisy data and agglutinative languages, namely sparse data.

In order to obtain Turkish word embeddings, we trained Skipgram model of FastText on a

corpus of 20M Turkish tweets1. During training, we used the default settings except for an

embedding dimension of 200, learning rate of 0.025 and trained for 4 epochs. A complete

list of the training settings can be seen in Table 4.1. On the other hand, we used pre-trained

English word embeddings that is provided by FastText2. These word embeddings are ob-

tained from a CBOW model of FastText that is trained on Common Crawl3, a web site that

provides web crawl data. Embedding dimension for English is 300.

1http://www.kemik.yildiz.edu.tr/data/File/20milyontweet.rar
2https://s3-us-west-1.amazonaws.com/fasttext-vectors/crawl-300d-2M-subword.zip
3https://commoncrawl.org/

57

TABLE 4.1. FastText training settings for Turkish word embeddings

Argument Value
learning rate 0.025
lr update rate 100
dimension 200
size of the context window 5
number of epochs 4
nnumber of negatives sampled 5
loss function ns
number of threads 12

Using these pre-trained models, prior to training, we compute word embeddings for all out-

of-vocabulary (OOV) words which are generated by using their character n-grams. Then we

initialize an embedding lookup table where each word has a corresponding word embedding.

4.1.4. Morph2vec

Morph2vec [9] is another representation learning algorithm that utilizes sub-word informa-

tion to form the word embeddings. The algorithm takes a list of candidate morphological

segmentations of all words in the training data and computes the word embeddings from

their related morpheme embeddings. Given that each word has multiple sequences of can-

didate morphological segmentations, an attention mechanism is used on top of the model in

order to give more weight to the correct sequence of segmentations. Finally, vectorial rep-

resentation of words from a pre-trained word2vec model is used in order to allow the model

compute distance between the learned and pre-trained embeddings.

We also incorporate morpheme embeddings that we obtain from a pre-trained morph2vec

model. Embedding dimensions are for English and Turkish are 75 and 50 respectively. We

argue that using morphemes makes it easier to distinguish words with inflectional endings

that mostly made up of verbs, so that these words can contribute to the model as negative

samples.

58

FIGURE 4.4. Architecture of morph2vec with an attention mechanism on top of bi-LSTMs.
[9]

Since we could not find any morpheme-level embeddings for more than 20% words in Turk-

ish dataset, DS-1 due to its noisy nature, we also tried to extend the morph2vec model by

additionally learning character-level embeddings so that if a word does not have a morpheme-

level embedding, we can build an embedding using its characters. Results of this alternate

approach can also be seen in Chapter 5, although it failed to improve the results any further.

4.1.5. Dropout

Finally, the resulting word embeddings that we used as input to the baseline and transfer

learning models are the concatenation of FastText, morph2vec, word2vec and orthographic

59

character-level embeddings.

After concatenating the aforementioned word embeddings, we also apply dropout on this

final embedding vector which randomly sets a ratio r of the embeddings as zero. In addition,

outside of these zeroed ratio are also scaled by a factor of 1/(1 − r), so that the sum of

the embedding remains unchanged. Dropout operation, thus, prevents the model to solely

depend on one type of word embeddings and, consequently, ensures better generalization.

We use dropout rate r = 0.5 during the experiments.

4.2. LSTM-CRF Model

Our baseline model is a basic LSTM-CRF model that is similar to that of Lample et al. [4],

Collobert et al [33], Huang et al. [32], Chiu et al. [34], Ma et al. [35]. In this model, we use

a word-level LSTM to learn higher-order features and then use them to feed a linear-chain

CRF to output a prediction of label sequence. Overview of the baseline model can be seen

in Figure 4.5.. The model consists of LSTM and CRF components.

4.2.1. LSTM Component

Given an input sentence (i.e. tweet) W = (w1, w2, ..., wN) where the length is N , we first

compute the vectorial representation xn of each word wn. This word representation is the

concatenation of different word embeddings techniques that we describe previously. The

sequence of these word representations (x1, x2, ..., xN) for a word wn is then used as input to

bidirectional LSTM layer so that forward and backward LSTM layers can capture the context

of words on both sides. A bidirectional LSTM (Bi-LSTM) comprises two separate LSTM

networks. While one of them is fed with vector representation of words in order, the other

one is fed with vector representation of words in reverse order. Thus, during training, they

learn forward and backward word representations independently and this allow us to capture

information semantically better. An architecture of this network can be seen in Figure 4.6..

60

FIGURE 4.5. Our baseline LSTM-CRF model that we learn higher-order word representa-
tions by using a Bi-LSTM and then fed the concatenated output to CRF in order to predict the
label sequence. Here, word embedding encoders are namely fasttext, word2vec, morph2vec

and orthographic character-level embedding techniques that we have presented earlier.

We use the following LSTM implementation [14]:

ft = σ(Wf .[ht1 , xt] + bf) (105)

it = σ(Wi.[ht−1, xt] + bi) (106)

c̃t = tanh(Wc̃t .[ht−1, xt] + bc̃t) (107)

ct = ft ◦ ct−1 + it ◦ c̃t (108)

ot = σ(Wo[ht−1, xt] + bo) (109)

ht = tanh(ct) ◦ ot, (110)

where ◦ is the element-wise product and σ is the element-wise sigmoid function which

61

squashes the values between zero and one, thus, deciding how much of the old informa-

tion it wants to keep. As we can see in the equations, input i, forget f and output o gates are

almost the same sigmoid functions except for their different weights and biases. Forget gate

ft determines the proportion of the previous information ct−1 to be kept for new cell state ct.

Input gate it and candidate values c̃t decides how much of the information will be updated

for the new cell state ct. Following this operation, output gate ot determines how much of

the cell state ct will be outputted after the tanh operation on the cell state which squashes

the values between -1 and 1. The important thing to notice here is the gating mechanisms

that allow to forget/keep some of the old hidden states in order to prevent vanishing gradients

during matrix multiplication. Finally, we obtain the output of forward and backward LSTM

layers;
−→
ht and

←−
ht respectively which are concatenated to form the final word representation

ht = [
−→
ht ;
←−
ht].

FIGURE 4.6. Architecture of a bidirectional LSTM network. Source: University of Cam-
bridge Research Students Lecture Series. Source: https://www.cl.cam.ac.uk

4.2.2. CRF Component

We apply dropout operation on the output ht of the bidirectional LSTM for better gener-

alization and then use a linear-chain CRF to jointly predict sequence of labels. Given an

62

input sequence of X = (x1, x2, ..., xN), CRF computes an output sequence of predictions

Y = (y1, y2, ..., yN). The prediction score of a sequence can be defined as:

S(X, y) =
n∑
i=0

Ayi,yi+1
+

n∑
i=1

Pi,yi , (111)

where P is the matrix that we obtained from the bidirectional LSTM and A is the transition

matrix that is a computation of transition from a previous state (i.e. label) to the next state.

P matrix has the size of N.k where k is number of distinct tags. Thus, Pi,yi is the score of

yi given a word wi. As a log-linear model, the probability of the output sequence of y then

becomes:

p(y|X) =
εs(X,y)∑
ỹ∈Yx ε

s(X,y)
, (112)

where Yx is the all possible label sequences. Finally, the goal becomes to maximize the log-

probability of the correct prediction sequence. Building the log-linear model gives us the

form:

log(p(y|X)) = s(X, y)− log(
∑
ỹ∈Yx

εs(X,ỹ)) (113)

The correctly-predicted sequence of labels is the one that maximizes the equation above such

that:

arg max
ỹ∈Yx

s(X, ỹ). (114)

As we have already discussed in Chapter 2. both the parameter estimation and decoding of

this equation can be solved by using dynamic programming. Weights of bidirectional LSTM

and CRF layers are initialized using uniform Glorot initialization.

63

4.2.2.1. Tagging Scheme

There are different tagging schemes that can be used for the CRF output. When it is thought

that a named entity may span multiple consecutive words, a tagging scheme that impose

some constraints on determining the possible label of a word is highly useful. IOB format is

such tagging scheme which uses B prefix for a word at the beginning of an named entity, I

prefix for a word that inside a named entity, and O prefix for others.

IOBES is a variant of IOB format that further restricts the possible label of a word with the

help of additional prefixes such as E prefix that is used for specifying the ending of a named

entity and S prefix that is used for named entities with only one word. Here is an example

sentence tagged with the IOBES format:

Mustafa/B-PERSON Kemal/I-PERSON Ataturk/E-PERSON was born in 1881/S-DATE in

the former Ottoman/B-ORGANIZATION Empire/E-ORGANIZATION.

4.3. Transfer Learning Model

As the results presented in Chapter 5 also indicate, the baseline model fails to assign labels

for some of the named entity types if the types are rarely seen in the training data. In order

to learn these rare types better, we have incorporated another CRF layer that we trained on a

different, preferably larger dataset named source dataset. The key idea is that the model can

learn from both datasets while optimized only for the target dataset, so that it can also predict

rare entity types seen in the target dataset. In order to achieve this goal, we have adapted the

cross-domain transfer learning model proposed by Yang et al. [17] as an extension to our

baseline model. Figure 4.7. presents the overview of this model.

Furthermore, following the example of von Däniken et al. [43], we also add Rectified Linear

Unit (ReLU) layers and linear layers between the bidirectional LSTM and CRF layers which

increased the overall performance of the model considerably. A linear layer is simply a

fully-connected feed-forward network (FFNN) with one hidden layer. Similarly, A ReLU

64

FIGURE 4.7. Overview of the initial transfer learning model which incorporates additional
CRF layer. CRF layers are alternately trained on different datasets so that the shared layers
learn from both datasets and, therefore, learning can be transferred from source dataset to

target dataset.

layer is a fully-connected FFNN with ReLU activation function. As we can see in Figure

4.8., all these layers and their parameters up to the last linear layer are shared by both of the

CRF layers. Weights of this last linear layer are initialized using uniform Glorot initializer,

whereas, biases of the layer are initialized as zeros.

We alternately trained on one of the two datasets for each epoch. Unlike the model proposed

by [43], we have used the same word embeddings as our base model and, in this regard, we

include the concatenation of word embeddings obtained from fasttext, morph2vec, word2vec

and orthographic character-level embeddings in our architecture.

65

FIGURE 4.8. Overview of the final transfer learning model which incorporates additional
CRF layer and additional linear and ReLU layer to further improve model performance.

66

4.4. Implementation Details

The models presented in the thesis are implemented using Python3.5 and Tensorflow 1.8.0.

All source code and related material can also be accessed openly on https://github.com/emrekgn/turkish-

ner

67

5. EXPERIMENTS & RESULTS

In this chapter, we first introduce the Turkish and English datasets which are used throughout

the experiments. Then, we present the results of our experiments on Turkish and English

datasets while mainly focusing on the results of our baseline and transfer learning models.

Additionally, we present the contribution of each embedding type to our models and give a

brief overview of all experiments conducted in order to better understand how the changing

parts of the models affect the results.

5.1. Datasets

We experimented on three different datasets in English and Turkish that can be seen in Table

5.1.

TABLE 5.1. Datasets that are used throughout the experiments

Dataset NE types Noisy # of tokens # of NEs
DS-1 TR-tweet ENAMEX, TIMEX, NUMEX Yes 55K 1.4K
DS-2 CoNLL’03 ENAMEX No 302K 35K

DS-3 WNUT’17

corporation, creative-work,
group, location,
person, product Yes 104K 3.8K

The first one, DS-1 [6] is the re-annotated version of the initial Turkish tweet (noisy) dataset

[20] that consists of ENAMEX, TIMEX and NUMEX types. ”ENAMEX types include orga-

nization, location and person names, TIMEX contains date and time and NUMEX contains

money and percentage” [3]. It is also stated in [47] that re-annotation according to the sixth

of Message Understanding Conferences, MUC-6, guidelines [3] also provides better consis-

tency and quality. We can see the NE type distribution of the dataset in Table 5.2.. Since the

dataset does not have training and test splits, we split the dataset into training, test and vali-

dation sets with a ratio of 80%, 10%, 10% respectively and applied 10-fold cross validation.

As we have earlier stated that our bidirectional LSTM-CRF model is based on the work of

Lample et al. [4] and the second dataset, DS-2, is the English CoNLL’03 dataset [48] used

68

TABLE 5.2. Number of different entity types in Turkish noisy dataset, DS-1

Entity Type Amount
person 699
location 230
organization 363
date 56
time 20
money 12
percentage 3
Total 1383

by Lample et al. [4] to evaluate their model. The dataset consists of person, organization,

location and miscellaneous types. Miscellaneous type is used to indicate entities that do not

belong to other three types. Although the dataset contains both NE tags and POS tags, we

did not use POS tags for our model. The dataset has training, test and development sets with

a size of 203K, 51K, and 46K tokens.

TABLE 5.3. Number of different entity types in English formal dataset, DS-2

Entity Type Train Development Test Total
person 6600 1842 1617 10059
location 7140 1837 1668 10645
organization 6321 1341 1661 9323
miscellaneous 3438 922 702 5062
Total 23499 5942 5648 35089

The last one, DS-3 [49], is the English dataset prepared for Workshop on Noisy User-

generated Text (WNUT’17) emerging and rare entity recognition task [50] which in-

cludes: person, location, corporation, product (consumer goods, service), creative work

(song, movie, tv series, book), group (music band, sports team, non-corporate organiza-

tions). According to [49], the text was collected from Youtube comments, StackExchange

comments/posts, tweets and Reddit comments with the goal ”to provide high-variance data,

with very few repeated surface forms” [50]. Similar to the dataset for WNUT’15 task [51],

this dataset also contains Twitter NER dataset of [36] as its training data. While devel-

opment data contains Youtube comments, test data consists of comments/posts from other

69

sources stated earlier. Distribution of NE types can be seen below in Table 5.4. The dataset

has training, test and development sets with a size of 65K, 23K, and 16K tokens.

TABLE 5.4. Number of different entity types in English noisy dataset, DS-3

Entity Type Train Development Test Total
person 660 470 429 1559
location 548 74 150 772
corporation 221 34 66 321
product 142 114 127 383
creative-work 140 104 142 386
group 264 39 165 468
Total 1975 835 1079 3889

5.2. Experiments

We trained and evaluated models for both English and Turkish separately. We used the

provided data (training, development and test) splits for the English datasets. On the other

hand, due to being a relatively small dataset and having imbalanced distribution of NE types,

we used 10-fold cross validation for all of our experiments that we conducted on Turkish

dataset. Turkish dataset, DS-1, is split into training, test and development data with a ratio of

80%, 10%, 10% respectively.

As we can see in the results, two different models are used throughout the experiments,

namely:

• Baseline Model which is a bidirectional LSTM-CRF model that is similar to that of

model presented by Lample et al. [4].

• Transfer Learning Model which is an extension of the baseline model that is based

on the models presented by [17] and [43] and trained on two different datasets simul-

taneously.

70

5.2.1. Preprocessing

Prior to tokenization of all of the datasets;

• We replaced URLs (tokens starting with http) with a special token. This allows us to

reduce sparsity and our model to converge relatively faster.

• We also replaced Twitter mentions (Twitter usernames starting with @ sign) with an-

other special token for DS-1. As a result, this greatly reduced the number of PERSON

entities from 4256 to 699.

5.2.2. Experimental Setting & Training

During all experiments, both of the models are trained using backpropagation algorithm and

their related parameters are optimized using Stochastic Gradient Descent. We trained for 100

epochs with a learning rate of 0.005 in addition to using gradient clipping of 5.0. Dropout rate

for all our dropout layers are set to 0.5. Hidden dimension of character-level bidirectional

LSTM and word-level bidirectional LSTM layers are set to 30 and 250 respectively. Tuning

these dimensions or any other hyperparameter did not significantly improve the performance

of the models. An overview of these hyperparameters can be seen in Table 5.5.

We use an embedding dimension of 400 for English and Turkish word embeddings that are

obtained from pre-trained word2vec models. English word embeddings are trained on a cor-

pus of 400M English tweets [46], whereas Turkish word embeddings are trained on BOUN

web corpus of 423M words and 20M Turkish tweets. For morpheme-level embeddings, we

use pre-trained morph2vec models for English and Turkish with dimensions of 75 and 50

respectively. In order to obtain character n-gram level embeddings, we trained fasttext on

a corpus of 20M Turkish tweets1 by Bolat and Amasyalı. On the other hand, we used pre-

trained English character n-gram level embeddings that is provided by FastText2 itself. These

1http://www.kemik.yildiz.edu.tr/data/File/20milyontweet.rar
2https://s3-us-west-1.amazonaws.com/fasttext-vectors/crawl-300d-2M-subword.zip

71

embeddings are obtained from a model that is trained on web crawl data with a dimension of

300.

TABLE 5.5. Hyperparameters

Hyperparameter Value
gradient clip 5.0
learning rate 0.005
lr optimizer sgd
batch size 10
dropout 0.5
epochs 100
hidden sizeBiLSTM(char) 30
hidden sizeBiLSTM(word) 250
dimensionfasttext(en) 300
dimensionmorph2vec(en) 75
dimensionfasttext(tr) 200
dimensionmorph2vec(tr) 50
dimensionword2vec 400
dimensionchar 30

5.2.3. Evaluation

During evaluation of the experiments on DS-1 and DS-2, we used Python re-implementation

of the CoNLL’00 evaluation script [48] for NER3 that is the de facto choice in the literature.

Different measures are provided by CoNLL’00 evaluation script such as accuracy, precision,

recall and F1 score. Here, accuracy measures the overall performance of the model by com-

puting the ratio of correctly labeled labels to the total number of tokens. But this results in a

highly imbalanced value since most of the tokens are not part of a named entity and, there-

fore, labeled as ’0’. Precision gives the ratio of correctly labeled named entities (chunks)

to the total label predictions. Similarly, recall measures the ratio of correctly labeled named

entities (chunks) to the total correct predictions. Finally, F1 score is computed by taking

”harmonic mean of precision and recall (2 ∗ precision ∗ recall/(precision+ recall))” [48].

In order to measure the overall performance of any given model for a task of sequence label-

ing, F1 score is commonly chosen over accuracy since it intuitively defines a good measure
3https://github.com/spyysalo/conlleval.py

72

of the model by taking false negatives and false positives into account and accuracy gives im-

balanced results due to highly-skewed entity type distribution (i.e. most of the tokens does

not have any entity label).

However, for the experiments on DS-3, we used WNUT’17 evaluation script4 that is also a

re-implementation of CoNLL’00 evaluation script with stricter rules for ill-formed entities.

This is done by measuring both entity-level and surface forms measures (precision, recall

and F1 score). Entity-level measures are similar to the CoNLL’00 script but surface form

measures are measured by using the set of unique surface forms so that a correctly-labeled

entity is ”only counted once no matter how many times it appears in the dataset” [49]. This

way a model will not be rewarded if it can only learn the frequent entities and, thus, it can be

evaluated on how good it is to detect and correctly label infrequent entities.

5.2.4. Experimental Results on Turkish

We have already discussed that named entity recognition for Turkish is still a challenging

problem due to being a morphologically-rich language and having scarce annotated data.

Experiments for Turkish have been conducted on DS-1 which is a relatively small dataset

with highly imbalanced NE type distribution as we can see in Table 5.2. An overview of the

experimental results can be seen in Table 5.8. Embeddings column of the table represents the

word embeddings obtained from different word (and sub-word) level representation learning

algorithms that we have discussed earlier. In this regard fasttext, word2vec, morph2vec,

character-level and orthographic character-level embeddings are denoted in the table by ft,

w2v, m2v, char, ortho respectively. For brevity, only the notable experiments are shown and

detailed here. Complete list of the experiment results on Turkish noisy dataset, DS-1 can be

seen in Appendix A.
4https://noisy-text.github.io/2017/emerging-rare-entities.html

73

5.2.4.1. Baseline Model

Our baseline model is the bidirectional LSTM-CRF architecture that incorporates different

word embeddings obtained from fasttext and orthographic character-level embeddings that

are trained on another bidirectional LSTM layer. Alternately, we have also experimented

with an orthographic character-level convolutional neural network (CNN) in order to obtain

orthographic embeddings but the results are comparably worse than the results of this variant.

The results for the CNN experiments can also be analyzed in Appendix A.

TABLE 5.6. Experiment results of the baseline model with fasttext and orthographic
character-level embeddings on Turkish noisy dataset, DS-1

Entity Type Precision (%) Recall (%) F1 score (%)
person 69.74 52.95 60.04
organization 82.87 59.38 68.54
location 64.47 45.76 52.75
date 46.66 19.91 26.26
time 11.11 11.11 11.11
money 0 0 0
percentage 0 0 0
overall 71.96 51.1 59.7

We have achieved an F1 score of 59.7% with the baseline model although the model failed to

label any entities with MONEY and PERCENTAGE types. We believe this is mainly because

of the low number of these entity types. There are only 12 examples of MONEY and 3

examples of PERCENTAGE. Furthermore, the model did not even encounter examples of

some of these entity types in most of the iterations of the cross-validation during training.

As a result, the model expectedly did not manage to learn valuable features for these types.

Instead of 10-fold cross validation, choosing different number of splits (folds) also did not

improve the results.

5.2.4.2. Transfer Learning Model

Our proposed model which we apply transfer learning, is an extension of the baseline model

by incorporating another CRF layer that we train on a different preferably larger dataset,

74

named source dataset. It is important to emphasize again that our aim is to train the model

on two different datasets so that it can learn from both of them, but the model is evalu-

ated only for the target dataset. As source dataset, we used the re-annotated version of the

Turkish news corpus with 492K tokens originally provided by Tür, Gökhan et al. [19] and

re-annotated by Şeker, Gökhan Akın, and Gülşen Eryiğit [6]. In this transfer learning model,

we used pre-trained embeddings of fasttext and morph2vec. Additionally, we also used or-

thographic character-level embeddings that we trained on a character-level CNN. As we can

see in the results of other variants in Appendix A, character-level CNN performed better than

the character-level LSTM for the transfer learning model on DS-1.

TABLE 5.7. Experiment results of the transfer learning model with fasttext, morph2vec and
ortographic character-level embeddings on Turkish noisy dataset, DS-1

Entity Type Precision (%) Recall (%) F1 score (%)
person 72.69 57.9 64.34
organization 80.56 67.52 73.08
location 75.38 60.21 66.24
date 50.83 29.59 36.57
time 30 18.66 21.33
money 20 13.33 15
percentage 0 0 0
overall 74.45 58.94 65.72

As we can see in Table 5.7., transfer learning approach improves upon the results of the

baseline model with an F1 score 65.72%. Although, the overall result and the results on rare

entity types (such as DATE, TIME, MONEY) are higher compared to the baseline model, the

model still failed to label the entity type PERCENTAGE but we believe this is an expected

outcome given that it has only 3 examples in the whole dataset.

5.2.4.3. Discussion

As we can see in the results, transfer learning model that incorporates word embeddings

obtained from fasttext, morph2vec and orthographic character-level embeddings achieves

the best results out of all the experiments with an F1 score of 65.72%. Although it fails to

75

TA
B

L
E

5.
8.

O
ve

rv
ie

w
of

th
e

re
su

lts
on

Tu
rk

is
h

no
is

y
da

ta
se

t,
D

S-
1.

Tr
an

sf
er

le
ar

ni
ng

-1
is

th
e

in
iti

al
tr

an
sf

er
le

ar
ni

ng
m

od
el

th
at

is
si

m
pl

y
an

ex
te

ns
io

n
of

th
e

ba
se

lin
e

m
od

el
by

ad
di

ng
ad

di
tio

na
l

C
R

F.
Tr

an
sf

er
le

ar
ni

ng
-2

re
pr

es
en

ts
th

e
fin

al
tr

an
sf

er
le

ar
ni

ng
m

od
el

w
ith

th
e

ad
di

tio
na

lR
eL

U
an

d
lin

ea
rl

ay
er

s.

M
od

el
E

m
be

dd
in

gs
A

cc
ur

ac
y

(%
)

Pr
ec

is
io

n
(%

)
R

ec
al

l(
%

)
F1

Sc
or

e
(%

)
ba

se
lin

e
m

2v
,c

ha
r

96
.7

0
47

.7
8

14
.2

9
21

.8
8

ba
se

lin
e

m
2v

,o
rt

ho
96

.7
2

60
.6

14
.1

1
22

.8
1

ba
se

lin
e

w
2v

,c
ha

r
96

.7
7

53
.2

8
19

.5
7

28
.4

5
ba

se
lin

e
w

2v
,o

rt
ho

96
.6

9
60

.6
4

16
.5

7
25

.8
ba

se
lin

e
ft

,c
ha

r
97

.7
74

.2
5

48
.6

9
58

.6
9

ba
se

lin
e

ft
,o

rt
ho

97
.7

3
71

.9
6

51
.1

59
.7

ba
se

lin
e

ft
,c

ha
r,

or
th

o
97

.7
1

74
.7

9
48

.1
58

.4
2

ba
se

lin
e

ft
,m

2v
97

.6
7

71
.3

6
50

.0
2

58
.7

3
ba

se
lin

e
ft

,m
2v

,c
ha

r
97

.7
2

74
.4

8
49

.1
1

59
.0

3
ba

se
lin

e
ft

,m
2v

,o
rt

ho
97

.6
8

73
.1

2
48

.7
58

.3
2

ba
se

lin
e

ft
,m

2v
,o

rt
ho

(c
nn

)
97

.6
9

74
49

.4
6

59
.0

7
tr

an
sf

er
le

ar
ni

ng
-1

ft
,o

rt
ho

97
.8

2
74

.8
8

51
.5

7
60

.8
9

tr
an

sf
er

le
ar

ni
ng

-2
ft

,m
2v

,o
rt

ho
97

.8
7

70
.7

8
60

.3
5

65
.1

2
tr

an
sf

er
le

ar
ni

ng
-2

ft
,m

2v
,o

rt
ho

(c
nn

)
97

.9
5

74
.4

5
58

.9
4

65
.7

2
tr

an
sf

er
le

ar
ni

ng
-2

ft
,o

rt
ho

(c
nn

)
97

.8
9

69
.8

9
60

.5
6

64
.7

3
tr

an
sf

er
le

ar
ni

ng
-2

ft
,o

rt
ho

97
.8

8
68

.0
9

63
.0

4
65

.3
7

76

predict infrequent named entities that occur less than 20 times, we believe this is a reasonable

outcome since the dataset, DS-1 is arguably small and highly imbalanced.

As we have reviewed in Chapter 3, state-of-the-art research [6] for Turkish noisy dataset, DS-

1 achieved an F1 score of 67.96% which is a CRF-based model incorporating hand-crafted

features and domain-specific knowledge (gazetteers). These include morphological features

(such as stem, POS tags, noun case, proper noun, inflectional features), lexical features

(case feature, is-start-of-the-sentence), gazetteers lookup features, TIMEX and NUMEX re-

lated features (is-numeric-value, has-percentage-sign, is-oclock-term, has-column-indicator,

month gazetteer, currency gazetteer). In oder to adapt the model for user-generated content

(noisy data), they also used: auto capitalization gazetteer (a list of names with little chance

of being used as common nouns) as feature. Hence, they aim to differentiate proper names

from common nouns. Additionally, they used Twitter mentions (Twitter usernames starting

with a handle character, @) as feature. In this regard, using hand-crafted features heavily

relies on the domain at hand. For example, the existence of a handle character as an indica-

tion to label tokens as PERSON is only applicable for Twitter domain and without the use of

this feature, they obtained an F1 score of 63.63%. Moreover, they only obtained 47.15% F1

score without using capitalization feature.

Similarly, other related work on this matter also uses CRF-based models with hand-crafted

features and gazetteers. Çelikkaya et al. [20] use morphological and lexical features such

as stem, POS tag, noun case, lower/upper case are used along with gazetteers. Eken, Beyza

and Tantug, Cüneyd [25] use the existing of apostrophe character, case of the word, start

of sentence, gazetteers for NE types of PLOs (person, location, organization names) with

optional Levenshtein distance-based matching. Different from the others, Küçük, Dilek and

Steinberger, Ralf [23] use a rule-based NER system that incorporates list of person, location,

organization (PLOs) names and patterns for NE types time, date, money, percent and PLOs,

they also apply normalization scheme before NER phase. We present a comparison of our

baseline and transfer learning models with these related work on Turkish noisy dataset, DS-1

in Table 5.9.. Note that these related work uses different (re-annotated) versions of the same

77

dataset, so that named entity distributions of them may differ slightly. Şeker and Eryiğit [6]

present the latest version (v4) of the dataset, which is also used in our experiments.

TABLE 5.9. Comparison of our models with the related work on Turkish noisy dataset, DS-1

Related Work F1 score (%) Dataset
Şeker and Eryiğit [6] 63.63 DS-1 v4
Çelikkaya et al. [20] 19.28 DS-1 v1
Küçük and Steinberger [23] 46.93 DS-1 v2
Eken and Tantug [25] 28.53 DS-1 v3
baseline model (ft, ortho) 59.7 DS-1 v4
transfer learning model-1 (ft, ortho) 65.12 DS-1 v4
transfer learning model-2 (ft, m2v, ortho-cnn) 65.72 DS-1 v4

5.2.5. Experimental Results on English

Experiments for English have been conducted on DS-2 and DS-3 datasets. We experimented

on DS-2 for the sole purpose of proving that our baseline model is a similar implementation

of the model proposed by Lample et al. [4]. The complete list of the experiment results on

English datasets DS-2 and DS-3 can be further analyzed in Appendix B.

5.2.5.1. Baseline Model

Our baseline, bidirectional LSTM-CRF, model that is trained on DS-2 dataset with pre-

trained embeddings from word2vec and character-level embeddings obtains an F1 score of

89.95% on English news dataset, DS-2. This proves that our model is competitive to that of

the BiLSTM-CRF model presented in Lample et al. [4]. They report an F1 score of 90.94%

on the same dataset. Results of our experiment is detailed on Table 5.11..

Furthermore the baseline model that is trained on DS-3 dataset with embeddings from fast-

text, word2vec, morph2vec and orthographic character-level embeddings obtains an F1 score

of 39.84% on entity-level and 37.74% on surface form. Additionally, we also incorporated

pre-trained embeddings from word2vec, following the example of Aguilar et al. [1]. Since

English is a comparably morphologically-poor language, we observed that using word-level

78

TA
B

L
E

5.
10

.
O

ve
rv

ie
w

of
th

e
re

su
lts

on
E

ng
lis

h
no

is
y

da
ta

se
t,

D
S-

3.
Tr

an
sf

er
le

ar
ni

ng
-1

is
th

e
in

iti
al

tr
an

sf
er

le
ar

ni
ng

m
od

el
th

at
is

si
m

pl
y

an
ex

te
ns

io
n

of
th

e
ba

se
lin

e
m

od
el

by
ad

di
ng

ad
di

tio
na

lC
R

F.
Tr

an
sf

er
le

ar
ni

ng
-2

re
pr

es
en

ts
th

e
fin

al
tr

an
sf

er
le

ar
ni

ng
m

od
el

w
ith

th
e

ad
di

tio
na

lR
eL

U
an

d
lin

ea
rl

ay
er

s.

M
od

el
E

m
be

dd
in

gs
E

nt
ity

L
ev

el
(%

)
Su

rf
ac

e
Fo

rm
(%

)
A

cc
ur

ac
y

Pr
ec

is
io

n
R

ec
al

l
F1

Sc
or

e
A

cc
ur

ac
y

Pr
ec

is
io

n
R

ec
al

l
F1

Sc
or

e
ba

se
lin

e
m

2v
,c

ha
r

92
.5

1
26

.6
7

5.
57

9.
21

92
.5

1
25

.7
5.

77
9.

42
ba

se
lin

e
m

2v
,o

rt
ho

92
.5

6
24

.2
4.

92
8.

17
92

.5
6

23
.7

5.
24

8.
58

ba
se

lin
e

w
2v

,c
ha

r
94

64
.9

26
.0

7
37

.1
9

94
64

.5
7

28
.2

1
39

.2
7

ba
se

lin
e

w
2v

,o
rt

ho
94

.1
1

66
.4

3
26

.4
4

37
.8

2
94

.1
1

66
.2

9
29

.2
1

40
.5

5
ba

se
lin

e
ft

,c
ha

r
93

.1
4

52
.8

7
7.

7
13

.4
4

93
.1

4
52

.3
8

8.
07

13
.9

9
ba

se
lin

e
ft

,o
rt

ho
93

.3
1

47
.5

4
15

.2
1

23
.0

5
93

.3
1

45
.0

2
14

.6
8

22
.1

3
ba

se
lin

e
ft

,c
ha

r,
or

th
o

93
.3

2
48

.2
4

14
.0

1
21

.7
1

93
.3

2
46

.6
9

14
.0

5
21

.6
ba

se
lin

e
ft

,m
2v

93
.0

7
54

.4
1

6.
86

12
.1

9
93

.0
7

52
.8

5
6.

81
12

.0
7

ba
se

lin
e

ft
,m

2v
,c

ha
r

93
.1

46
.6

7
7.

79
13

.3
5

93
.1

46
.1

1
8.

07
13

.7
4

ba
se

lin
e

ft
,m

2v
,o

rt
ho

93
.3

9
48

.3
9

15
.3

1
23

.2
6

93
.3

9
45

.4
5

14
.6

8
22

.1
9

ba
se

lin
e

ft
,m

2v
,o

rt
ho

,w
2v

94
.1

9
66

.8
1

28
.3

9
39

.8
4

94
.1

9
66

.7
6

26
.3

1
37

.7
4

ba
se

lin
e

ft
,m

2v
,o

rt
ho

(c
nn

),
w

2v
94

.1
4

66
.2

3
28

.3
9

39
.7

4
94

.1
4

65
.8

7
26

.1
37

.3
9

tr
an

sf
er

le
ar

ni
ng

-1
ft

,o
rt

ho
91

.4
24

.4
7

21
.2

4
22

.7
4

91
.4

26
.3

8
20

.0
2

22
.7

7
tr

an
sf

er
le

ar
ni

ng
-2

ft
,m

2v
,o

rt
ho

93
.6

3
48

.8
1

22
.9

1
31

.1
9

93
.6

3
46

.9
8

21
.1

7
29

.1
9

tr
an

sf
er

le
ar

ni
ng

-2
ft

,o
rt

ho
,w

2v
94

.2
2

55
.6

7
33

.6
7

41
.9

7
94

.2
2

54
.4

5
31

.4
5

39
.8

7
tr

an
sf

er
le

ar
ni

ng
-2

ft
,m

2v
,o

rt
ho

,w
2v

94
.1

7
57

.0
1

33
.2

1
41

.9
7

94
.1

7
56

.1
4

31
.1

3
40

.0
5

79

TABLE 5.11. Experiment results of the baseline model with word2vec and ortographic
character-level embeddings on English formal dataset, DS-2

Entity type Precision Recall F1
person 96.11 96.17 96.14
organization 87.75 87.96 87.85
location 92.04 90.83 91.43
miscellaneous 78.04 75.93 76.97
overall 90.24 89.66 89.95

embeddings such as word2vec can indeed increase the accuracy of the model. The model

processed 23376 tokens with 1078 phrases and found 458 phrases on entity-level where 306

of them are correct. Additionally, it found 376 phrases on surface-form where 251 of them

are correct. Results of this experiment are presented in Table 5.12..

TABLE 5.12. Experiment results of the baseline model with fastText, word2vec, morph2vec
and orthographic character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 35.71 15.15 21.28 33.33 11.67 17.28
creative-work 56.25 6.34 11.39 60 6.62 11.92
group 43.75 12.73 19.72 40.48 12.06 18.58
location 72 48 57.6 71.79 44.8 55.17
person 74.9 43.93 55.38 75 41.6 53.52
product 40 4.72 8.45 50 5.13 9.3
overall 66.81 28.39 39.84 66.76 26.31 37.74

5.2.5.2. Transfer Learning Model

On the other hand, our proposed approach - transfer learning model - obtains an F1 score

of 41.97% on entity-level and 40.05% on surface forms. The model, similar to the baseline

model, processes a total of 23376 tokens with 1078 phrases and found 628 phrases on entity-

level where 358 of them are correct. Moreover, it found 529 phrases on surface forms where

297 of them are correctly labeled. Details on different entity types can be found in Table

5.13.. We can see that transfer learning helps the model to learn rarely-seen entity types

compared to the baseline model, thus the results are significantly improved.

80

TABLE 5.13. Experiment results of the transfer learning model with fasttext, morph2vec,
word2vec and orthographic character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 32.43 18.18 23.3 34.62 15 20.93
creative-work 37.5 6.34 10.84 40.91 6.62 11.39
group 56.36 18.79 28.18 54 19.15 28.27
location 42.86 54 47.79 39.26 51.2 44.44
person 70.72 50.23 55.74 71.6 47.73 57.28
product 52.63 7.87 13.7 50 7.69 13.33
overall 57.01 33.21 41.97 56.14 31.13 40.05

5.2.5.3. Discussion & Comparison

As we can see in the results, transfer learning model that incorporates embeddings obtained

from fasttext, morph2vec, word2vec and orthographic character-level embeddings achieves

the best results out of all experiments with an F1 score of 41.97% on entity-level and 40.05%

on surface forms.

In Table 5.14., we present the comparison our baseline and transfer learning models with the

related work on English noisy dataset, DS-3. Aguilar et al. [1] reports the state-of-the-art

results on this dataset with an F1 score of 41.86% entity level and 40.24% on surface forms.

They apply multi-task learning with a CRF-based model that incorporates pre-trained word

embeddings obtained from word2vec and orthographic character-level embeddings trained

on a CNN with 2-stacked convolutional layers. They also make use of gazetteers for well-

known entities of all of the entity types. von Däniken and Cieliebak [43] use a transfer

learning model on which our proposed model is based. But unlike ours model, their model

incorporates sentence-level embeddings (sent2vec) and capitalization features in addition to

character-level embeddings trained on a CNN and pre-trained word embeddings obtained

from FastText. Lin et al. [39] follow a similar approach as a CRF-based model and use word

embeddings that are made of pre-trained word embeddings and character-level embeddings

obtained from another bidirectional LSTM. They also incorporate syntactic information by

using POS tags, dependency roles and word position in the sentence and head position. Sik-

dar and Gambäck [40] use a CRF as an ensemble-based approach which uses features learned

81

from CRF, support vector machine (SVM) and an LSTM. They also use hand-crafted features

such as POS tags, local context, chunk, suffix and prefix, word frequency and a collection

of flags (is-word-length-less-than-5, is-all-digit etc.). Williams and Santia [41] introduce a

statistical approach, context-sensitivity, where each word is associated with its contexts and

context conditional probabilities are used to figure out NE tag probabilities. In addition to

WNUT’17 dataset, they also used WNUT’16 dataset and a group of lexicon and external

dictionaries. Jansson and Liu [42], inspired by the work of [38], use a bidirectional LSTM-

CRF model that is similar to our baseline model but instead of orthographic features from

the original work, LDA topic modeling and POS tags are chosen to feed the LSTM layer.

TABLE 5.14. Comparison of our models with the related work on English noisy dataset,
DS-3

Related Work
F1 score (%)

Entity Level Surface Form
Jansson and Liu [42] 39.98 37.77
Williams and Santia [41] 26.3 25.26
Sikdar and Gamback [40] 38.35 36.31
Lin et al. [39] 40.42 37.62
von Daniken and Cieliebak [43] 40.78 39.33
Aguilar et al. [1] 41.86 40.24
baseline model (ft, ortho, m2v, w2v) 39.84 37.74
transfer learning model-1 (ft, ortho) 22.74 22.77
transfer learning model-2 (ft, ortho, m2v, w2v) 41.97 40.05

Our final transfer learning model achieves competitive results on surface forms. However it

achieves the best result on entity-level compared to the first two best models in WNUT’17;

von Daniken and Cieliebak [43] and Aguilar et al. [1] although both of them make use of

hand-crafted features such as capitalization or domain-specific knowledge such as gazetteers.

Only model without the use of hand-crafted features or external resources is the one presented

in Jansson and Liu [42]. Compared to this model, our transfer learning model predicts both

common and infrequent NE types better which we believe this is mostly a result of using

additional CRF-layer that is trained on another noisy dataset.

82

6. CONCLUSION

6.1. Concluding Remarks

We have researched the question of effectively using neural networks, and deep learning for

that matter, instead of rule-based approaches in order to achieve the named entity recog-

nition task for morphologically-rich languages such as Turkish and, more importantly, for

noisy data. We have also investigated the effects of different word and sub-word level repre-

sentation learning methods such as character n-gram level embeddings of fasttext, morpheme

level embeddings of morph2vec and orthographic character-level embeddings. The existing

studies in the literature on named entity recognition on Turkish still make use of hand-crafted

features (e.g. capitalization, numerical/date/time patterns or other rule-based features) and

external resources (e.g. gazetteers, lexicons). We believe this approach makes them domain-

specific and language-specific whereas our aim is to provide a neural network architecture

and in the process obtain valuable features without using any hand-crafted features or exter-

nal knowledge resources. Due to having scarce annotated data, we have also researched the

means in transfer learning from formal data to noisy (informal) data. So that, the resulting

Turkish NER model can also be used in different applications on different domains without

the need for domain-specific knowledge. We also argue that our proposed model can also be

effectively used for other morphologically-rich languages.

In this regard, we have experimented with a bidirectional LSTM-CRF architecture as our

baseline model that is widely adopted for various sequence labeling tasks in the literature.

As our feature set, we have also made use of pre-trained embedding that we obtained from

fasttext and morph2vec. Additionally, we have also trained orthographic character-level

bidirectional LSTM in order to learn orthographic features of words. For the experiments

on English dataset, we have also used pre-trained word embeddings that we obtained from

word2vec. Although the results we obtained during experimentation of this baseline model

seem promising both for Turkish and English, it performs comparably poor for rarely-seen

entity types (e.g. PERCENTAGE, TIME, MONEY in Turkish dataset and CORPORATION

83

in English dataset). We believe this is an expected outcome since, for example, there are

only 5 samples of PERCENTAGE, 20 samples of TIME and 24 samples of MONEY types

out of total 455 entities in Turkish noisy dataset, DS-1. Similarly, there are 312 samples of

CORPORATION out of total 3889 entities in English noisy dataset, DS-3. Furthermore, due

to applying 10-fold cross-validation on Turkish noisy dataset, DS-1, the frequency of see-

ing these infrequent examples is quite small. In order to overcome the problem of labeling

these infrequent NE types, we have extended the baseline model by incorporating another

CRF layer that we trained on a different larger dataset. While this proposed model is al-

ternately trained on two datasets, the neural layers up to the last CRF layers are shared so

that the overall model can learn from both datasets but optimized and evaluated only for the

target, noisy dataset. This allows us to successfully learn meaningful features to correctly

label some of the infrequent types and consequently it improved the overall results. The

transfer learning model, similar to the baseline model, also makes use of pre-trained em-

beddings obtained from fasttext, morph2vec and orthographic character-level embeddings

that are trained on another bidirectional LSTM. As a result, the proposed model for Turkish

achieved an F1 score of 65.72% on Turkish noisy dataset, DS-1. Additionally, similar to its

baseline counterpart, the proposed model for English also uses pre-trained embeddings of

word2vec. Consequently, we obtained an F1 score of 41.97% on entity-level and 40.05% on

surface forms for English.

These experimental results show that sub-word level representation techniques such as ortho-

graphic character-level and character n-gram level embeddings play a vital role for named

entity recognition on morphologically-rich languages. More importantly, we can success-

fully learn valuable information without using hand-crafted features or domain-specific ex-

ternal resources. Furthermore, it is also proven that transfer learning approach can indeed

effectively be used to tackle the problem of data scarcity. The proposed Turkish model ob-

tains the highest results when compared to the state-of-the-art result of Şeker and Eryiğit [6]

when their Twitter mention feature is excluded. As we have stated earlier, we believe that

Twitter mentions should not be included as PERSON types and therefore should not be la-

beled at all which is also the case for other named entity recognition studies in the literature.

84

Moreover, the proposed model for English achieves competitive results when compared to

state-of-the-art studies on English noisy data such as Aguilar et al. [1], and von Däniken

[43].

6.2. Future Work

Given that one of our main goals is to perform named entity recognition on morphologically-

rich languages, we plan to investigate the means to further improve the contribution of sub-

word level representation techniques, specifically character level and morpheme level em-

beddings. In this regard, focusing on the distinction between derivational and inflectional

morphemes can be used since majority of named entities are proper nouns that can only

take inflectional suffixes. We also aim to achieve better when it comes to transfer learning

by investigating the effects of different neural architectures. Additionally, we also intend to

experiment with different morphologically-rich languages such as other Turkic languages.

85

A APPENDIX: EXPERIMENTAL RESULTS ON TURKISH NOISY

DATASET

TABLE 1.1. Experiment of baseline model with fasttext and character-level embeddings on
Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 69.37 49.09 57.47
organization 85.74 58.96 69.4
location 74.78 46.26 56.17
date 46 20.23 27.52
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 74.25 48.69 58.69

TABLE 1.2. Experiment of baseline model with morph2vec and character-level embeddings
on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 40.25 14.29 20.83
organization 57.48 28.38 36.49
location 0 0 0
date 0 0 0
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 47.78 14.29 21.88

TABLE 1.3. Experiment of baseline model with word2vec and character-level embeddings
on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 55.1 23.11 32.21
organization 51.73 29.66.24 36.81
location 5 0.37 0.69
date 20 4.5 7.33
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 53.28 19.57 28.45

86

TABLE 1.4. Experiment of baseline model with fasttext and orthographic character-level
embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 69.74 52.95 60.04
organization 82.87 59.38 68.54
location 64.47 45.76 52.75
date 46.66 19.91 26.26
time 11.11 11.11 11.11
money 0 0 0
percentage 0 0 0
overall 71.96 51.1 59.7

TABLE 1.5. Experiment of baseline model without CRF layer and with fasttext and ortho-
graphic character-level embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 39.1 10.67 16.52
organization 68.64 31.21 42.44
location 0 0 0
date 0 0 0
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 53.81 14.04 22.09

TABLE 1.6. Experiment of baseline model with fasttext, character-level and orthographic
character-level embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 70.84 48.92 57.79
organization 85.96 56.88 67.7
location 70.51 43.35 53.14
date 60 21.06 29.22
time 10 3.33 5
money 0 0 0
percentage 0 0 0
overall 74.79 48.1 58.42

87

TABLE 1.7. Experiment of baseline model with fasttext, morph2vec and orthographic
character-level embeddings that is trained on CNN, on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 69.36 49.62 57.49
organization 82.78 59.23 68.72
location 76.84 47.03 56.59
date 56.5 23.1 28.78
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 74.00 49.46 59.07

TABLE 1.8. Experiment of baseline model with fasttext, morph2vec that is trained for
morpheme and character embeddings and orthographic character-level embeddings that is

trained on CNN, on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 72.09 45.81 55.62
organization 85.8 60.99 70.1
location 78.9 50.04 59.75
date 43 20.49 26.48
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 76.37 48 58.78

TABLE 1.9. Experiment of baseline model with morph2vec and orthographic character-level
embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 52.05 13.71 21.58
organization 72.53 27.7 39.39
location 10 0.32 0.62
date 0 0 0
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 60.6 14.11 22.81

88

TABLE 1.10. Experiment of baseline model with word2vec and orthographic character-level
embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 59.77 24.07 33.91
organization 68.3 15.95 25.28
location 0 0 0
date 20 2.76 4.76
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 60.64 16.57 25.8

TABLE 1.11. Experiment of baseline model with fasttext and morph2vec embeddings on
Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 67.07 51.43 58.02
organization 83.17 60.41 69.38
location 66.8 45.33 53.56
date 35.83 24.77 28.26
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 71.36 50.02 58.73

TABLE 1.12. Experiment of baseline model with fasttext, morph2vec and character-level
embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 71.04 51.52 59.60
organization 86.09 56.45 67.69
location 72.56 43.90 53.70
date 37.66 20.78 26.45
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 74.48 49.11 59.03

89

TABLE 1.13. Experiment of baseline model with fasttext, morph2vec and orthographic
character-level embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 70.15 49.45 57.71
organization 83.31 59.53 69.07
location 69.09 44.23 52.8
date 53.66 18.5 25.85
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 73.12 48.7 58.32

TABLE 1.14. Experiment of alternate transfer learning model without additional ReLU and
Linear layers and with fasttext, orthographic character-level embeddings on Turkish noisy

dataset, DS-1

Entity type Precision Recall F1
person 72.72 53.2 61.09
organization 84.17 59.51 69.44
location 69.61 47.76 56.31
date 56.66 25.27 29.95
time 20 6.66 10
money 10 3.33 5
percentage 0 0 0
overall 74.88 51.57 60.89

TABLE 1.15. Experiment of transfer learning model with fasttext, and orthographic
character-level embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 65.06 63.92 64.24
organization 78.25 68.57 72.77
location 67.59 66.56 66.55
date 50.33 39.7 42.26
time 30 20 23
money 2.5 3.33 2.85
percentage 0 0 0
overall 68.09 63.04 65.37

90

TABLE 1.16. Experiment of transfer learning model with fasttext and orthographic
character-level embeddings that is trained on CNN on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 68.42 59.99 63.49
organization 78.04 68.96 72.91
location 68.93 64.59 66.37
date 48.27 31.85 36.64
time 20 8.33 11.66
money 6.66 10 8
percentage 0 0 0
overall 68.09 63.04 65.37

TABLE 1.17. Experiment of transfer learning model with fasttext, morph2vec that is trained
for morpheme and character embeddings and orthographic character-level embeddings that

is trained on CNN, on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 65.9 23.78 34.7
organization 65.72 30.74 41.39
location 70.84 22.48 32.87
date 0 0 0
time 0 0 0
money 0 0 0
percentage 0 0 0
overall 65.63 23.85 34.88

TABLE 1.18. Experiment of transfer learning model with fasttext, morph2vec and ortho-
graphic character-level embeddings on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 68.52 62.19 65.11
organization 81.88 68.42 74.25
location 68.25 58.13 61.94
date 47.66 24.44 29.96
time 10 6.66 8
money 0 0 0
percentage 0 0 0
overall 70.78 60.35 65.12

91

TABLE 1.19. Experiment of transfer learning model with fasttext, morph2vec and ortho-
graphic character-level embeddings that is trained on CNN on Turkish noisy dataset, DS-1

Entity type Precision Recall F1
person 72.69 57.9 64.34
organization 80.56 67.52 73.08
location 75.38 60.21 66.24
date 50.83 29.59 36.57
time 30 18.66 21.33
money 20 13.33 15
percentage 0 0 0
overall 74.45 58.94 65.72

TABLE 1.20. Experiment of transfer learning model with fasttext, morph2vec and ortho-
graphic character-level embeddings that is trained on CNN on Turkish noisy dataset, DS-1
without preprocessing of Twitter mentions (same as the original dataset where Twitter men-

tions are also labelled as PERSON)

Entity type Precision Recall F1
person 95.93 92.98 94.42
organization 84.36 63.75 72.08
location 72.69 63.9 67.15
date 56.33 37.54 41.91
time 26.66 10 14.3
money 0 0 0
percentage 0 0 0
overall 93.71 88.24 90.88

92

B APPENDIX: EXPERIMENTAL RESULTS ON ENGLISH NOISY

AND FORMAL DATASETS

TABLE 2.1. Experiment of baseline model with word2vec and character-level embeddings
on English formal dataset, DS-2

Entity type Precision Recall F1
person 96.11 96.17 96.14
organization 87.75 87.96 87.85
location 92.04 90.83 91.43
miscellaneous 78.04 75.93 76.97
overall 90.24 89.66 89.95

TABLE 2.2. Experiment of baseline model with fasttext and character-level embeddings on
English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 28.57 1.41 2.68 28.57 1.47 2.8
group 0 0 0 0 0 0
location 42.5 11.33 17.89 43.59 13.6 20.73
person 61.54 14.95 24.06 61.05 15.47 24.68
product 0 0 0 0 0 0
overall 52.87 7.7 13.44 52.38 8.07 13.99

TABLE 2.3. Experiment of baseline model with morph2vec and character-level embeddings
on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 0 0 0 0 0 0
group 100 0.61 1.2 100 0.71 1.41
location 22.22 13.33 16.67 18.6 12.8 15.17
person 30.71 9.11 14.05 31.67 10.13 15.35
product 0 0 0 0 0 0
overall 26.67 5.57 9.21 25.7 5.77 9.42

93

TABLE 2.4. Experiment of baseline model with word2vec and character-level embeddings
on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 33.33 16.67 22.22 32 17.02 22.22
creative-work 46.67 4.93 8.92 53.85 5.83 10.53
group 47.37 10.91 17.73 44.12 11.81 18.63
location 74.42 42.67 54.24 73.85 40 51.89
person 71.2 41.59 52.51 71.57 52.33 60.46
product 27.27 2.36 4.35 22.22 1.85 3.42
overall 64.9 26.07 37.19 64.57 28.21 39.27

TABLE 2.5. Experiment of baseline model with fasttext and orthographic character-level
embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 36.36 2.82 5.23 36.36 2.94 5.44
group 29.41 3.03 5.49 29.41 3.55 6.33
location 31.01 26.67 28.67 27.59 25.6 26.56
person 62.16 26.87 37.52 60.37 26.4 36.73
product 0 0 0 0 0 0
overall 47.54 15.21 23.05 45.02 14.68 22.13

TABLE 2.6. Experiment of baseline model with morph2vec and orthographic character-level
embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 0 0 0 0 0 0
group 0 0 0 0 0 0
location 18.1 12.67 14.9 16 12.8 14.22
person 30.91 7.94 12.64 31.78 9.04 14.11
product 0 0 0 0 0 0
overall 24.2 4.92 8.17 23.7 5.24 8.58

94

TABLE 2.7. Experiment of baseline model with word2vec and orthographic character-level
embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 29.41 15.15 20 28 14.89 19.44
creative-work 53.85 4.93 9.03 53.85 5.83 10.53
group 48.72 11.52 18.63 47.06 12.6 19.88
location 69.57 42.67 52.89 69.01 40.83 51.31
person 74.79 41.59 53.45 75.25 53.41 62.47
product 53.85 5.51 10 50 5.56 10
overall 66.43 26.44 37.82 66.29 29.21 40.55

TABLE 2.8. Experiment of baseline model with fasttext, morph2vec and character-level
embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 14.29 0.7 1.34 14.29 0.74 1.4
group 8.33 0.61 1.13 8.33 0.71 1.31
location 36.54 12.67 18.81 37.25 15.2 21.59
person 59.43 14.72 23.6 59.57 14.93 23.88
product 0 0 0 0 0 0
overall 46.67 7.79 13.35 46.11 8.07 13.74

TABLE 2.9. Experiment of baseline model with fasttext, morph2vec and orthographic
character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 36.36 2.82 5.23 36.36 2.94 5.44
group 40 4.85 8.65 33.33 4.26 7.55
location 29.51 24 26.47 27.43 24.8 26.05
person 63.59 27.34 38.24 61.11 26.4 36.87
product 0 0 0 0 0 0
overall 48.39 15.31 23.26 45.45 14.68 22.19

95

TABLE 2.10. Experiment of baseline model with fasttext and morph2vec embeddings on
English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 33.33 1.41 2.7 33.33 1.47 2.82
group 0 0 0 0 0 0
location 57.14 10.67 17.98 59.26 12.8 21.05
person 60.22 13.08 21.5 59.02 12.53 20.61
product 0 0 0 0 0 0
overall 54.41 6.86 12.19 52.85 6.81 12.07

TABLE 2.11. Experiment of baseline model with fasttext, character-level and orthographic
character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 36.36 2.82 5.23 36.36 2.94 5.44
group 30.43 4.24 7.45 27.27 4.26 7.36
location 32 21.33 25.6 29.35 21.6 24.88
person 60.67 25.23 35.64 60.25 25.87 36.19
product 0 0 0 0 0 0
overall 48.24 14.01 21.71 46.69 14.05 21.6

TABLE 2.12. Experiment of baseline model with fasttext, morph2vec, word2vec and ortho-
graphic character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 35.71 15.15 21.28 33.33 11.67 17.28
creative-work 56.25 6.34 11.39 60 6.62 11.92
group 43.75 12.73 19.72 40.48 12.06 18.58
location 72 48 57.6 71.79 44.8 55.17
person 74.9 43.93 55.38 75 41.6 53.52
product 40 4.72 8.45 50 5.13 9.3
overall 66.81 28.39 39.84 66.76 26.31 37.74

96

TABLE 2.13. Experiment of alternate transfer learning model without additional ReLU and
Linear layers and with fasttext, orthographic character-level embeddings on English noisy

dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 0 0 0 0 0 0
group 33.33 5.45 9.38 28 4.96 8.43
location 24.31 29.33 26.59 21.43 28.8 24.57
person 25.14 41.12 31.21 29.42 39.47 33.71
product 0 0 0 0 0 0
overall 24.47 21.24 22.74 26.38 20.02 22.77

TABLE 2.14. Experiment of transfer learning model with fasttext, morph2vec and ortho-
graphic character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 0 0 0 0 0 0
creative-work 50 1.41 2.74 50 1.47 2.86
group 14.29 12.73 13.46 13.97 13.48 13.72
location 57.32 31.33 40.52 52.86 29.6 37.95
person 68.6 41.36 51.6 68.9 38.4 49.32
product 0 0 0 0 0 0
overall 48.81 22.91 31.19 46.98 21.17 29.19

TABLE 2.15. Experiment of transfer learning model with fasttext, morph2vec, PoS tag
embeddings and orthographic character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 20 1.52 2.82 20 1.67 3.08
creative-work 33.33 2.11 3.97 33.33 2.21 4.14
group 24.39 12.12 16.19 23.61 12.06 15.96
location 63.41 34.67 44.83 63.64 33.6 43.98
person 69.23 33.64 45.28 70.48 31.2 43.25
product 0 0 0 0 0 0
overall 55.56 20.41 29.85 54.88 18.87 28.08

97

TABLE 2.16. Experiment of transfer learning model with fasttext, word2vec and ortho-
graphic character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 32.5 19.7 24.53 31.03 15 20.22
creative-work 47.37 6.34 11.18 50 6.62 11.69
group 54.55 18.18 27.27 53.06 18.44 27.37
location 42.86 56 48.55 39.64 53.6 45.58
person 68.34 50.93 58.37 68.56 48.27 56.65
product 39.13 7.09 12 36.36 6.84 11.51
overall 55.67 33.67 41.97 54.45 31.45 39.87

TABLE 2.17. Experiment of baseline model with fasttext, morph2vec, word2vec and ortho-
graphic character-level embeddings that is trained on CNN on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 34.78 12.12 17.98 31.25 8.33 13.16
creative-work 50 4.93 8.97 58.33 5.15 9.46
group 47.62 12.12 19.32 44.74 12.06 18.99
location 66.97 48.67 56.37 64.77 45.6 53.52
person 73.85 44.86 55.81 74.76 41.87 53.68
product 42.86 4.72 8.51 42.86 5.13 9.16
overall 66.23 28.39 39.74 65.87 26.1 37.39

TABLE 2.18. Experiment of transfer learning model with fasttext, morph2vec, word2vec
and orthographic character-level embeddings on English noisy dataset, DS-3

Entity Type
Entity Level (%) Surface Form (%)

Precision Recall F1 score Precision Recall F1 score
corporation 32.43 18.18 23.3 34.62 15 20.93
creative-work 37.5 6.34 10.84 40.91 6.62 11.39
group 56.36 18.79 28.18 54 19.15 28.27
location 42.86 54 47.79 39.26 51.2 44.44
person 70.72 50.23 55.74 71.6 47.73 57.28
product 52.63 7.87 13.7 50 7.69 13.33
overall 57.01 33.21 41.97 56.14 31.13 40.05

98

REFERENCES

[1] Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López Monroy, and Thamar

Solorio. A multi-task approach for named entity recognition in social media

data. In Proceedings of the 3rd Workshop on Noisy User-generated Text, pages

148–153. 2017.

[2] Ralph Grishman and Beth Sundheim. Message understanding conference-6: A

brief history. In COLING 1996 Volume 1: The 16th International Conference on

Computational Linguistics, volume 1. 1996.

[3] Ralph Grishman. Sixth message understanding conference MUC-6 task descrip-

tion, 1996. [Online; accessed 25. Sep. 2018].

[4] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya

Kawakami, and Chris Dyer. Neural architectures for named entity recognition.

arXiv preprint arXiv:1603.01360, 2016.

[5] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating

non-local information into information extraction systems by Gibbs sampling. In

Proceedings of the 43rd annual meeting on association for computational lin-

guistics, pages 363–370. Association for Computational Linguistics, 2005.

[6] Gökhan Akın Şeker and Gülşen Eryiğit. Extending a CRF-based named entity

recognition model for Turkish well formed text and user generated content 1.

Semantic Web, 8(5):625–642, 2017.

[7] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. Transactions of the Association for

Computational Linguistics, 5:135–146, 2017. ISSN 2307-387X.

99

[9] Ahmet Üstün, Murathan Kurfalı, and Burcu Can. Characters or morphemes: How

to represent words? In Proceedings of The Third Workshop on Representation

Learning for NLP, pages 144–153. 2018.

[10] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional ran-

dom fields: Probabilistic models for segmenting and labeling sequence data.

2001.

[11] R Hecht-Nielsen. Neural network primer: part i. AI Expert, pages 4–51, 1989.

[12] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,

Technische Universität München, 91:1, 1991.

[13] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gra-

dient flow in recurrent nets: the difficulty of learning long-term dependencies,

2001.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[15] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using RNN encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

[16] Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide

to) convolutional neural networks for sentence classification. arXiv preprint

arXiv:1510.03820, 2015.

[17] Zhilin Yang, Ruslan Salakhutdinov, and William W Cohen. Transfer learn-

ing for sequence tagging with hierarchical recurrent networks. arXiv preprint

arXiv:1703.06345, 2017.

100

[18] Onur Güngör, Eray Yıldız, Suzan Üsküdarlı, and Tunga Güngör. Morphologi-

cal embeddings for named entity recognition in morphologically rich languages.

arXiv preprint arXiv:1706.00506, 2017.

[19] Gökhan Tür, Dilek Hakkani-Tür, and Kemal Oflazer. A statistical information

extraction system for Turkish. Natural Language Engineering, 9(2):181–210,

2003.

[20] Gökhan Çelikkaya, Dilara Torunoğlu, and Gülşen Eryiğit. Named entity recog-

nition on real data: a preliminary investigation for Turkish. In Application of

Information and Communication Technologies (AICT), 2013 7th International

Conference on, pages 1–5. IEEE, 2013.

[21] Tuğba Pamay, Umut Sulubacak, Dilara Torunoğlu-Selamet, and Gülşen Eryiğit.

The annotation process of the ITU web treebank. In Proceedings of The 9th

Linguistic Annotation Workshop, pages 95–101. 2015.

[22] Gülşen Eryiğit. ITU Turkish NLP web service. In Proceedings of the Demon-

strations at the 14th Conference of the European Chapter of the Association for

Computational Linguistics, pages 1–4. 2014.

[23] Dilek Küçük and Ralf Steinberger. Experiments to improve named entity recog-

nition on Turkish tweets. arXiv preprint arXiv:1410.8668, 2014.

[24] Dilek Küçük, Guillaume Jacquet, and Ralf Steinberger. Named entity recogni-

tion on Turkish tweets. In Proceedings of the Ninth International Conference on

Language Resources and Evaluation (LREC-2014). 2014.

[25] Beyza Eken and Cüneyd Tantuğ. Recognizing named entities in Turkish tweets.

In Proceedings of the Fourth International Conference on Software Engineering

and Applications, Dubai, UAE. 2015.

[26] Eda Okur, Hakan Demir, and Arzucan Özgür. Named entity recognition on Twit-

ter for Turkish using semi-supervised learning with word embeddings. In LREC.

2016.

101

[27] Haşim Sak, Tunga Güngör, and Murat Saraçlar. Turkish language resources:

Morphological parser, morphological disambiguator and web corpus. In Ad-

vances in natural language processing, pages 417–427. Springer, 2008.

[28] Haşim Sak, Tunga Güngör, and Murat Saraçlar. Resources for Turkish morpho-

logical processing. Language resources and evaluation, 45(2):249–261, 2011.

[29] B Sezer, T Sezer, and Mersin Ünivesitesi. TS Corpus: Herkes için Türkçe derlem.

In Proceedings 27th National Linguistics Conference. May, pages 3–4. 2013.

[30] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple

and general method for semi-supervised learning. In Proceedings of the 48th

annual meeting of the association for computational linguistics, pages 384–394.

Association for Computational Linguistics, 2010.

[31] Dilara Torunoğlu and Gülşen Eryiğit. A cascaded approach for social media

text normalization of Turkish. In Proceedings of the 5th Workshop on Language

Analysis for Social Media (LASM), pages 62–70. 2014.

[32] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for se-

quence tagging. arXiv preprint arXiv:1508.01991, 2015.

[33] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from

scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.

[34] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional

LSTM-CNNs. arXiv preprint arXiv:1511.08308, 2015.

[35] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional

LSTM-CNNs-CRF. arXiv preprint arXiv:1603.01354, 2016.

[36] Alan Ritter, Sam Clark, Oren Etzioni, et al. Named entity recognition in tweets:

an experimental study. In Proceedings of the conference on empirical methods in

102

natural language processing, pages 1524–1534. Association for Computational

Linguistics, 2011.

[37] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D Manning. La-

beled lda: A supervised topic model for credit attribution in multi-labeled cor-

pora. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing: Volume 1-Volume 1, pages 248–256. Association for Com-

putational Linguistics, 2009.

[38] Nut Limsopatham and Nigel Henry Collier. Bidirectional LSTM for named entity

recognition in Twitter messages. 2016.

[39] Bill Y Lin, Frank Xu, Zhiyi Luo, and Kenny Zhu. Multi-channel BiLSTM-CRF

model for emerging named entity recognition in social media. In Proceedings of

the 3rd Workshop on Noisy User-generated Text, pages 160–165. 2017.

[40] Utpal Kumar Sikdar and Björn Gambäck. A feature-based ensemble approach

to recognition of emerging and rare named entities. In Proceedings of the 3rd

Workshop on Noisy User-generated Text, pages 177–181. 2017.

[41] Jake Williams and Giovanni Santia. Context-sensitive recognition for emerging

and rare entities. In Proceedings of the 3rd Workshop on Noisy User-generated

Text, pages 172–176. 2017.

[42] Patrick Jansson and Shuhua Liu. Distributed representation, lda topic modelling

and deep learning for emerging named entity recognition from social media. In

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 154–159.

2017.

[43] Pius von Däniken and Mark Cieliebak. Transfer learning and sentence level fea-

tures for named entity recognition on tweets. In Proceedings of the 3rd Workshop

on Noisy User-generated Text, pages 166–171. 2017.

103

[44] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning

of sentence embeddings using compositional n-gram features. arXiv preprint

arXiv:1703.02507, 2017.

[45] Low-resource named entity recognition via multi-source projection: Not quite

there yet? - W-NUT201825.pdf, 2018. [Online; accessed 1. Oct. 2018].

[46] Fréderic Godin, Baptist Vandersmissen, Wesley De Neve, and Rik Van de Walle.

Multimedia lab @ ACL WNUT NER shared task: Named entity recognition for

Twitter microposts using distributed word representations. In Proceedings of the

Workshop on Noisy User-generated Text, pages 146–153. 2015.

[47] Gökhan Akın Şeker and Gülşen Eryiğit. Initial explorations on using CRFs for

Turkish named entity recognition. Proceedings of COLING 2012, pages 2459–

2474, 2012.

[48] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003

shared task: Language-independent named entity recognition. In Proceedings

of the seventh conference on Natural language learning at HLT-NAACL 2003-

Volume 4, pages 142–147. Association for Computational Linguistics, 2003.

[49] Leon Derczynski, Eric Nichols, Marieke van Erp, and Nut Limsopatham. Results

of the WNUT2017 shared task on novel and emerging entity recognition. In

Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 140–147.

2017.

[50] WNUT2017 Emerging entities dataset.

[51] Timothy Baldwin, Marie-Catherine de Marneffe, Bo Han, Young-Bum Kim, Alan

Ritter, and Wei Xu. Shared tasks of the 2015 workshop on noisy user-generated

text: Twitter lexical normalization and named entity recognition. In Proceedings

of the Workshop on Noisy User-generated Text, pages 126–135. 2015.

104

CURRICULUM VITAE

Credentials

Name,Surname : EMRE KAĞAN AKKAYA

Place of Birth : Bursa,Turkey

Marital Status : Single

E-mail : emrekaganakkaya@gmail.com

Address : Computer Engineering Dept., Hacettepe University

Beytepe-ANKARA

Education

BSc. : Computer Engineering Dept., Hacettepe University, Turkey

MSc. : Computer Engineering Dept., Hacettepe University, Turkey

Foreign Languages

English

Work Experience

Bor Yazılım (2012-2013) - Part-time #NET Web Developer

Agem Bilişim (2013-) - Full-time Java/Python Developer

Areas of Experiences

Machine Learning, NLP

Projects and Budgets

——

105

Publications

”Transfer Learning for Turkish Named Entity Recognition on Noisy Text”,

Natural Language Engineering, 2018 (submitted),

Emre Kağan Akkaya, Burcu Can Buğlalılar

Oral and Poster Presentations

——

106

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	FIGURES
	TABLES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Overview
	1.2. Motivation
	1.3. Research Questions
	1.4. Organization of the Thesis

	2. BACKGROUND
	2.1. Conditional Random Fields
	2.1.1. Mathematical Definition

	2.2. Artificial Neural Networks
	2.2.1. Definition
	2.2.2. Recurrent Neural Networks
	2.2.3. Convolutional Neural Networks

	2.3. Word Representations
	2.3.1. Word2vec
	2.3.2. FastText
	2.3.3. Morph2vec

	2.4. Transfer Learning

	3. LITERATURE REVIEW
	3.1. Named Entity Recognition on Turkish
	3.1.1. Studies on Formal Data
	3.1.2. Studies on Noisy Data

	3.2. Named Entity Recognition on English
	3.2.1. Studies on Formal Data
	3.2.2. Studies on Noisy Data

	3.3. Transfer Learning

	4. THE PROPOSED MODEL
	4.1. Word Embeddings
	4.1.1. Orthographic character-level embeddings
	4.1.2. Word2vec
	4.1.3. FastText
	4.1.4. Morph2vec
	4.1.5. Dropout

	4.2. LSTM-CRF Model
	4.2.1. LSTM Component
	4.2.2. CRF Component

	4.3. Transfer Learning Model
	4.4. Implementation Details

	5. EXPERIMENTS & RESULTS
	5.1. Datasets
	5.2. Experiments
	5.2.1. Preprocessing
	5.2.2. Experimental Setting & Training
	5.2.3. Evaluation
	5.2.4. Experimental Results on Turkish
	5.2.5. Experimental Results on English

	6. CONCLUSION
	6.1. Concluding Remarks
	6.2. Future Work

	A APPENDIX: EXPERIMENTAL RESULTS ON TURKISH NOISY DATASET
	B APPENDIX: EXPERIMENTAL RESULTS ON ENGLISH NOISY AND FORMAL DATASETS
	REFERENCES

